
1

A Generic Framework for
Symbolic Execution:

Theory and Applications

Andrei Arusoaie

- thesis abstract in English -

2

Introduction

Symbolic execution is one of the most popular
techniques used for analyzing programs. It has been used
especially for test case generation, but there exist several
other applications (e.g. program verification, program
debugging, etc.).

The doctoral thesis titled A generic framework
for symbolic execution: theory and applications presents
a generic framework for symbolic execution, where the
genericity is given by the fact that this framework is
based on formal definitions of programming languages.
This is an advantage because symbolic execution is
implemented at the level of the language definition and
is not based on the syntax or on the compiler of a
particular language. In this thesis, the symbolic
execution framework is formally presented, using
algebraic specifications. This allows proving some
important properties of symbolic execution:

- Coverage: for each concrete execution there
exists a corresponding symbolic execution on the
same program (execution) path.

- Precision: for each symbolic execution there
exists a concrete execution on the same program
(execution) path.

These two properties are important because, in

the case in which, after analyzing a program, certain
results are obtained about symbolic executions, they
ensure that the results can be correctly transferred to the

3

concrete executions. Moreover, because of these
properties, the symbolic execution framework that we
propose can be used for program verification.

Contributions

The major contributions of this doctoral thesis
are:

1. A formal framework for symbolic execution and
an implementation thereof, based on the
operational semantics of programming
languages:

a. on the theoretical side, we formally define
programming languages and symbolic
execution and then we prove formally the
properties of Coverage and Precision;

b. on the practical side, we present a
prototype of this symbolic framework that
is implemented on top of the K
framework for language definitions and
which is based on language
transformations;

2. Applications of symbolic execution in program
verification:

a. program verification based on Hoare
logic, where we show how symbolic
execution can be used to verify Hoare
triples for a given programming language;

b. program verification based on
Reachability Logic, where we present an
alternative proof system for Reachability

4

Logic and an inference rule application
strategy that allows to automate the
checking of Reachability Logic formulae;
for this proof system and for the proposed
strategy, we have implemented a
prototype and we have shown soundness
(based on the soundness of the
Reachability Logic proof system) and a
form of weak completeness (for proving
formulae to be false).

Contents

The thesis is organized in six chapters, each of
which contains its own sections.

Chapter 1

This chapter introduces symbolic execution based
on existing approaches that use symbolic execution for
various types of applications. In presenting these
approaches, the basic principles of symbolic execution
are emphasized, but also the fact that the approaches are
tied to particular programming languages or depend on
the compiler. This also motivates the present doctoral
thesis, which is to create a language independent
framework for symbolic execution, based on the
operational semantics of programming languages.

5

Chapter 2

In this chapter, the notions and basic definitions
used in the thesis are introduced. First-order logic (the
multi-sorted version), Matching Logic and Reachability
Logic are introduced using this notation. The chapter
ends with the presentation of the K framework based on
an existing language definition (CinK).

Chapter 3

This chapter contains the main contribution of
the thesis, which is the formal framework for symbolic
execution. It is here that the formal notions of
programming language, unification and symbolic
execution relation are presented. At the same time, in
this chapter we show that unification can be reduced to
matching (under certain conditions) and, using this
result, we show the properties of Coverage and
Precision. At the end of the chapter we show that
symbolic execution can be obtained by language
transformation, which is useful from a practical point of
view (because the implementation is based on language
transformation).

Chapter 4

The applications of symbolic execution presented
in this chapter are the verification of Hoare triples and,
respectively, the verification of Reachability Logic
formulae.

6

The first section of the chapter introduces Hoare
logic and its proof system for a simple language called
IMP. Using a transformation of Hoare triples into
Reachability Logic formulae, we build the equivalent
proof system using Reachability Logic formulae. We
then enrich the IMP language with annotations specific
to Hoare logic (preconditions, post-conditions,
invariants) and we show that, by using symbolic
execution for this language, we find proofs in the
equivalence deductive system for Reachability Logic
formulae corresponding to Hoare triples.

In the second section of this chapter, we propose
an alternative proof system for Reachability Logic and
an inference rule application strategy. In the proposed
proof system, symbolic execution appears as a separate
inference rule. The soundness of the proof system and of
the proposed strategy is shown using the soundness of
the Reachability Logic proof system. At the same time,
we show a form of weak completeness that allows
proving Reachability Logic formulae to be false.

Chapter 5

This chapter describes the prototypes
implemented for symbolic execution and program
verification. In the first section, we present the language
transformation within the K compiler, so that symbolic
execution in the original language is equivalent to
concrete execution in the transformed language. In the
second section, a series of examples that emphasize the
functionalities of the prototype and the fact that it is
language independent are presented. The last section of

7

this chapter presents the prototype developed for the
verification of programs using Reachability Logic and
the proofs of two nontrivial programs created using it.

Conclusions

The last chapter summarizes the contributions of
this doctoral thesis and presents directions for future
work that involve extending existing prototypes to be
used in program verification.

