
K SEMANTICS FOR
ABSTRACTIONS

IRINA MĂRIUCA ASĂVOAE

A THESIS SUBMITTED FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE

UNIVERSITY ALEXANDRU IOAN CUZA, IAŞI

2012





This dissertation shows how abstract interpre-

tation’s view of program analysis and verification

can be instilled in the K framework in a generic

fashion as reflective semantics.

K is a rewriting-based framework dedicated to

defining executable specifications for programming

languages semantics. The definitional style pro-

posed by the K framework is an amalgamation of

features from different semantics (e.g., features from

operational semantics, continuation based seman-

tics, denotational semantics, a.s.o.). The current

K’s desideratum is to demonstrate that its formal

specification environment can be effectively used

for various classes of programming languages paradigms.

Abstract interpretation provides a well known,

standardized and extensively used framework for

1



program analysis and verification. The main idea

in abstract interpretation is that program analysis

and verification can be achieved by applying fix-

point iterators over sound approximations of pro-

gram semantics. Solely from a semantics perspec-

tive, abstract interpretation is a reflective seman-

tics environment where the reflexion of the seman-

tics is called abstraction.

The program analysis and verification approaches

tackled in K are either model checking, achieved

via Maude’s LTL model checker, or deductive ver-

ification, achieved via matching logic. However,

the third major verification technique, namely ab-

stract interpretation, was not systematically approached

in K. Our thesis addresses this omission and cov-

ers it. As such, we design a generic method for

2



defining in K abstract specifications of pushdown

systems and fixpoint iterators over these specifica-

tions. We demonstrate the efficiency of this de-

sign by instantiating it with three case studies of

abstractions for data analysis, alias analysis, and

shape analysis.

0.1 Objective

The main objective of the current work is to study

how abstract interpretation can be used in K for

program analysis and verification.

Abstract interpretation is a very prolific research

area which debuted in [13] as a unified framework

for static program analysis. Hence, in the begin-

nings abstract interpretation was a framework ded-

icated to defining static semantics. However, along

3



the time, abstract interpretation proved to be ap-

plied in many other areas of programming languages.

For a comprehensive description of these applica-

tions we refer to [12].

As stated before, we aim to obtain a combi-

nation of static semantics with dynamic seman-

tics. More to the point, we intend to employ model

checking over dynamic semantics of abstractions

in order to reproduce results obtained by static anal-

ysis via static semantics. In doing this, we rely

on the abstract interpretation view given in [33]

where a meta-algorithm for representing the anal-

ysis methods from abstract interpretation into ab-

stract model checking problems is described.

The meta-algorithm from [33] is transforms the

concrete program into the abstract one into two

4



steps of syntax-based, control flow-preserving ab-

straction and a final step which applies collect-

ing semantics via model checking of the abstract

model. Note that our main concern for the current

work is this final step, while the syntax-based ab-

stractions are collapsed into a single step and cov-

ered only for a simple example.

Our view about the meta-algorithm in [33] co-

ordinates with the view available in the tool Astrée

[35, 11]. Namely, Astrée is a comprehensive col-

lection of abstractions used to derive static anal-

ysis results for structured C programs, with com-

plex memory usages, but without dynamic memory

allocation and recursion. However, our main con-

cern is the analysis method itself. Hence, we adopt

the decoupling provided by the meta-algorithm in

5



[33], and assume that the static analysis methods

are parametric in the source programming language.

As such, we provide a collection of abstract pro-

gramming languages used to derive static analysis

results for real programming languages contain-

ing static and dynamic memory allocation in the

presence of recursion.

By comparison with the meta-algorithm in [33],

we replace conceptually the program with the spec-

ification of the programming language in which

the program is defined. Moreover, the syntax-based,

control flow preserving abstracting steps are seen

as one (compositional) step. In any case, our main

concern in the current work is the step which uses

the abstract model, in our case abstract program-

ming language specification, to obtain the static

6



analysis results. This step is based on the collect-

ing semantics, a semantics standardized in abstract

interpretation as a means of producing fixpoint it-

erations. Collecting semantics relies on the opera-

tional semantics of the abstraction and collects ex-

ecutions of the targeted program via a forward or

backward fixpoint iteration.

Consequently, we provide a generic method for

defining various analysis and verification methods

using abstract programming languages specifica-

tions and some instantiation of collecting seman-

tics. This is the objective of the current work and,

out of the two steps, we focus on the second one.

Brief related work: Among the projects support-

ing formal executable semantics specification we

mention AsmL [34], Coq [36, 10], Isabelle [37,

7



26, 25], or Maude [38, 19]. K is a dedicated frame-

work for specification of formal executable seman-

tics [14, 23]. Among the achievements reported in

K we mention the C specification [18, 16] and the

specification of a subset of Verilog [24]. The veri-

fication methods employed by these definitions are

model checking, via Maude LTL Model Checking

tool [15], and deductive verification, via matching

logic [14]. There are also ad-hoc approaches to

analysis methods as type checking [17, 16] and a

more standardized assertion-based analysis frame-

work [22, 21]. However, abstract interpretation

remains unexplored methodically in the K frame-

work.

8



0.2 Contributions

Towards achieving our objective, the key contribu-

tions of this dissertation are:

1. Generic collecting semantics for push-

down systems abstractions in K We describe a

methodology for defining in K finite abstractions

for pushdown systems. We choose pushdown sys-

tems because of their relative generality wrt pro-

gramming languages. Furthermore, we give a generic

algorithm for defining collecting semantics over

the K specification of finite pushdown systems.

This methodology is instantiated in all subsequent

contributions. This contribution is introduced in

[1, 2] and presented in Chapter 3.

2. Data analysis in K We instantiate with

9



predicate abstraction [20], a flow sensitive abstrac-

tion for static memory which can be used to verify

data invariants. We associate predicate abstrac-

tion with a collecting semantics which produces

the fixpoint iteration. This contribution is pub-

lished in [3, 4] and presented in Chapter 4.

3. Alias analysis in K We give the K specifi-

cation of an abstract programming language de-

fined in [30, 32]. We use this language with a

collecting semantics which defines the fixpoint it-

eration for producing alias analysis results. This

contribution is introduced in [1] and presented in

Chapter 5.

4. Shape analysis in K We give the K spec-

ification of an abstract programming language de-

fined in [31]. We use this language with a col-

10



lecting semantics which defines a generic invari-

ant model checking algorithm for pushdown sys-

tem specifications. The state properties employed

for the abstract language define shape invariants.

We employ these properties to produce demand

driven shape analysis. This contribution is briefly

described in [7, 5, 31, 6] and detailed in Chapter 6.

Earlier work on program analysis in K is pre-

sented in [22, 21] where the analysis is given as

an abstract semantics for a language of program

assertions. That work evolved into the deductive

verification tool proposed by matching logic [29,

28, 14]. The main difference in the approach pre-

sented in the current work is that we propose an

abstract semantics which is decoupled from the ac-

tual code, in the style of abstract interpretation.

11



Other publications co-authored and co-related

with the current work, but not directly reflected

here, are [8, 9, 27].

12



References

[1] I. M. Asăvoae. Abstract semantics for alias
analysis in K. K 2011, 2012. To appear.

[2] I. M. Asăvoae. Systematic design
of abstractions in K. WADT 2012,
Technical Report TR-08/12, Universi-
dad Complutense de Madrid, Depar-
tamento de Sistemas Informáticos y
Computación, pages 9–11, 2012. Ac-
cepted for presentation at WADT’12,
http://maude.sip.ucm.es/wadt2012/

docs/WADT2012-preproceedings.pdf.

[3] I. M. Asăvoae and M. Asăvoae. Collect-
ing semantics under predicate abstraction in
the K framework. P. C. Ölveczky, editor,
Rewriting Logic and Its Applications - 8th
International Workshop, WRLA 2010, Held

13

http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf


as a Satellite Event of ETAPS 2010, Pa-
phos, Cyprus, March 20-21, 2010, Revised
Selected Papers, volume 6381 of Lecture
Notes in Computer Science, pages 123–139.
Springer, 2010.

[4] I. M. Asăvoae, M. Asăvoae, and D. Lucanu.
Path directed symbolic execution in the K
framework. T. Ida, V. Negru, T. Jebelean,
D. Petcu, S. M. Watt, and D. Zaharie, edi-
tors, 12th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific
Computing, SYNASC 2010, Timişoara, Ro-
mania, 23-26 September 2010, pages 133–
141. IEEE Computer Society, 2010.

[5] I. M. Asăvoae, F. de Boer, M. Bonsangue,
D. Lucanu, and J. Rot. Bounded model
checking of recursive programs with pointers
in K. WRLA 2012, 2012. Accepted for pre-
sentation as work in progress at WRLA’12.

[6] I. M. Asăvoae, F. de Boer, M. Bonsangue,
D. Lucanu, and J. Rot. Bounded model
checking of recursive programs with pointers
in K. WADT 2012, Technical Report TR-
08/12, Universidad Complutense de Madrid,
Departamento de Sistemas Informáticos

14



y Computación, pages 12–15, 2012. Ac-
cepted for presentation at WADT’12,
http://maude.sip.ucm.es/wadt2012/

docs/WADT2012-preproceedings.pdf.

[7] I. M. Asăvoae, F. de Boer, M. Bonsangue,
D. Lucanu, and J. Rot. Model checking pro-
grams with dynamic linked structures. Tech-
nical Report LIACS Technical Report 2012-
02, LIACS, Universiteit Leiden, 2012.

[8] M. Asăvoae and I. M. Asăvoae. Using
the executable semantics for CFG extrac-
tion and unfolding. D. Wang, V. Negru,
T. Ida, T. Jebelean, D. Petcu, S. M. Watt,
and D. Zaharie, editors, 13th International
Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, SYNASC
2011, Timişoara, Romania, September 26-
29, 2011, pages 123–127. IEEE Computer
Society, 2011.

[9] M. Asăvoae, I. M. Asăvoae, and D. Lucanu.
On abstractions for timing analysis in the
K framework. R. P. na, M. van Eekelen,
and O. ShkaravskaDongming, editors, Sec-
ond International Workshop on Foundational
and Practical Aspects of Resource Analysis,

15

http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf


FOPARA 2011, Madrid, Spain, May 2011,
Revised selected papers, volume 7177 of
Lecture Notes in Computer Science, pages
90–107. Springer, 2012.

[10] G. Barthe, G. Dufay, L. Jakubiec, B. P. Ser-
pette, and S. M. de Sousa. A formal exe-
cutable semantics of the JavaCard platform.
D. Sands, editor, Programming Languages
and Systems, 10th European Symposium on
Programming, ESOP 2001 Held as Part of
the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Gen-
ova, Italy, April 2-6, 2001, Proceedings, vol-
ume 2028 of Lecture Notes in Computer Sci-
ence, pages 302–319. Springer, 2001.

[11] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-
critical software. R. Cytron and R. Gupta,
editors, Proceedings of the ACM SIGPLAN
2003 Conference on Programming Lan-
guage Design and Implementation 2003, San
Diego, California, USA, June 9-11, 2003,
pages 196–207. ACM, 2003.

16



[12] P. Cousot. Abstract interpretation. http://

www.di.ens.fr/~cousot/AI/.

[13] P. Cousot and R. Cousot. Abstract interpre-
tation: a unified lattice model for static anal-
ysis of programs by construction or approx-
imation of fixpoints. Symposium on Princi-
ples of Programming Languages, pages 238–
252. ACM Press, 1977.

[14] T. F. Şerbănuţă, G. Roşu, and A. Ştefănescu.
An overview of K and matching logic.
M. Hills, editor, K’11, Electronic Notes in
Theoretical Computer Science, to appear.

[15] S. Eker, J. Meseguer, and A. Sridhara-
narayanan. The Maude LTL model checker.
F. Gaducci and U. Montanari, editors, Work-
shop on Rewriting Logic and Its Applica-
tions, volume 71 of Electronic Notes in Theo-
retical Computer Science. Elsevier, Septem-
ber 2002.

[16] C. Ellison. An Executable Formal Semantics
of C with Applications. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, July
2012. http://fsl.cs.uiuc.edu/index.

php/A_Formal_Semantics_of_C_with_

Applications.

17

http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/AI/
http://fsl.cs.uiuc.edu/index.php/A_Formal_Semantics_of_C_with_Applications
http://fsl.cs.uiuc.edu/index.php/A_Formal_Semantics_of_C_with_Applications
http://fsl.cs.uiuc.edu/index.php/A_Formal_Semantics_of_C_with_Applications


[17] C. Ellison, T.-F. Şerbănuţă, and G. Roşu. A
rewriting logic approach to type inference.
A. Corradini and U. Montanari, editors, Re-
cent Trends in Algebraic Development Tech-
niques, 19th International Workshop, WADT
2008, Pisa, Italy, June 13-16, 2008, Re-
vised Selected Papers, volume 5486 of Lec-
ture Notes in Computer Science, pages 135–
151. Springer, 2009.

[18] C. Ellison and G. Roşu. An executable
formal semantics of C with applications.
J. Field and M. Hicks, editors, Proceedings
of the 39th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages, POPL 2012, Philadelphia, Penn-
sylvania, USA, January 22-28, 2012, pages
533–544. ACM, 2012.

[19] A. Farzan, F. Chen, J. Meseguer, and
G. Roşu. Formal analysis of Java programs
in JavaFAN. R. Alur and D. Peled, editors,
Computer Aided Verification, 16th Interna-
tional Conference, CAV 2004, Boston, MA,
USA, July 13-17, 2004, Proceedings, volume
3114 of Lecture Notes in Computer Science,
pages 501–505. Springer, 2004.

18



[20] S. Graf and H. Saidi. Construction of abstract
state graphs with PVS. Proceedings of the
9th Conference on Computer-Aided Verifica-
tion, pages 72–83. Springer-Verlag, 1997.

[21] M. Hills. A Modular Rewriting Approach to
Language Design, Evolution, and Analysis.
PhD thesis, University of Illinois at Urbana-
Champaign, 2009. http://fsl.cs.uiuc.

edu/~mhills/thesis/thesis.pdf.

[22] M. Hills and G. Roşu. A rewriting logic se-
mantics approach to modular program anal-
ysis. C. Lynch, editor, Proceedings of the
21st International Conference on Rewriting
Techniques and Applications, volume 6 of
Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 151–160, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[23] D. Lucanu, T.-F. Şerbănuţă, and G. Roşu. K
framework distilled. F. Duran, editor, WRLA
2012, volume ? of Lecture Notes in Com-
puter Science, pages ?–?? Springer, 2012. To
appear.

[24] P. O. Meredith, M. Katelman, J. Meseguer,
and G. Roşu. A formal executable seman-

19

http://fsl.cs.uiuc.edu/~mhills/thesis/thesis.pdf
http://fsl.cs.uiuc.edu/~mhills/thesis/thesis.pdf


tics of Verilog. 8th ACM/IEEE International
Conference on Formal Methods and Models
for Codesign (MEMOCODE 2010), Greno-
ble, France, 26-28 July 2010, pages 179–
188. IEEE Computer Society, 2010.

[25] S. Owens. A sound semantics for OCam-
llight. In: Programming Languages and
Systems, 17th European Symposium on Pro-
gramming, ESOP 2008, Lecture Notes in
Computer Science, pages 1–15. Springer,
2008.

[26] J. F. Ranson, H. J. Hamilton, P. W. L. Fong,
H. J. Hamilton, and P. W. L. Fong. A seman-
tics of Python in Isabelle/HOL, 2008.

[27] A. Riesco, I. M. Asăvoae, and M. Asăvoae.
A generic program slicing technique
based on language definitions. WADT
2012, Technical Report TR-08/12, Uni-
versidad Complutense de Madrid, De-
partamento de Sistemas Informáticos y
Computación, pages 91–92, 2012. Ac-
cepted for presentation at WADT’12,
http://maude.sip.ucm.es/wadt2012/

docs/WADT2012-preproceedings.pdf.

20

http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf


[28] G. Roşu and A. Ştefănescu. Matching logic:
a new program verification approach. R. N.
Taylor, H. Gall, and N. Medvidovic, edi-
tors, Proceedings of the 33rd International
Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu , HI, USA, May 21-
28, 2011, pages 868–871. ACM, 2011.

[29] G. Roşu, C. Ellison, and W. Schulte. Match-
ing logic: An alternative to Hoare/Floyd
logic. M. Johnson and D. Pavlovic, edi-
tors, Algebraic Methodology and Software
Technology - 13th International Conference,
AMAST 2010, Lac-Beauport, QC, Canada,
June 23-25, 2010. Revised Selected Papers,
volume 6486 of Lecture Notes in Computer
Science, pages 142–162. Springer, 2011.

[30] J. Rot. A Pushdown System Represen-
tation for Unbounded Object Creation.
PhD thesis, Universiteit Leiden Opleiding
Informatica, June 2010. http://www.

liacs.nl/assets/Masterscripties/

10-06-JurriaanRot.pdf.

[31] J. Rot, I. M. Asăvoae, F. de Boer, M. Bon-
sangue, and D. Lucanu. Interacting via the

21

http://www.liacs.nl/assets/Masterscripties/10-06-JurriaanRot.pdf
http://www.liacs.nl/assets/Masterscripties/10-06-JurriaanRot.pdf
http://www.liacs.nl/assets/Masterscripties/10-06-JurriaanRot.pdf


heap in the presence of recursion. ICE 2012,
2012. To appear.

[32] J. Rot, M. Bonsangue, and F. de Boer. A
pushdown automaton for unbounded object
creation. FOVEOOS 2010, 2010. Accepted
for presentation as position paper/ work in
progress at FOVEOOS.

[33] D. A. Schmidt and B. Steffen. Program anal-
ysis as model checking of abstract interpreta-
tions. G. Levi, editor, Static Analysis, 5th In-
ternational Symposium, SAS ’98, Pisa, Italy,
September 14-16, 1998, Proceedings, vol-
ume 1503 of Lecture Notes in Computer Sci-
ence, pages 351–380. Springer, 1998.

[34] WWW. AsmL. http://research.

microsoft.com/en-us/projects/asml/.

[35] WWW. Astrée. http://www.astree.ens.
fr/.

[36] WWW. Coq. http://coq.inria.fr/.

[37] WWW. Isabelle. http://www.cl.cam.ac.
uk/research/hvg/isabelle/.

[38] WWW. Maude. http://maude.cs.uiuc.

edu/.

22

http://research.microsoft.com/en-us/projects/asml/
http://research.microsoft.com/en-us/projects/asml/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://coq.inria.fr/
http://www.cl.cam.ac.uk/research/hvg/isabelle/
http://www.cl.cam.ac.uk/research/hvg/isabelle/
http://maude.cs.uiuc.edu/
http://maude.cs.uiuc.edu/

	0.1 Objective
	0.2 Contributions
	References

