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(Alexandru Ioan Cuza University of Iaşi)
Prof. Dr. Constantin Popescu

(University of Oradea)
Prof. Dr. Eng. Alin Suciu

(Technical University of Cluj-Napoca)
Prof. Dr. Cristian Masalagiu

(Alexandru Ioan Cuza University of Iaşi)
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Chapter 1

Introduction

A secret sharing scheme is a method of partitioning a master
secret among some participants by providing each participant
with a share of the secret such that any authorized set of partic-
ipants can uniquely reconstruct the secret by pulling together
their shares. Furthermore, any secret sharing scheme should
satisfy some security properties with respect to the secret recon-
struction phase:

• accessibility: any authorized set of participants can uniq-
uely recover the secret;

• perfect security: any unauthorized set of participants
should not contain any partial information on the secret.

A novel category of threshold secret sharing schemes based
on the Chinese Remainder Theorem (CRT) have independently
been proposed by Asmuth and Bloom [1] and Mignotte [25],
and later by Goldreich, Ron and Sudan [16] (GRS, for short).
The main characteristic of this class of schemes is the use of
sequences of pairwise co-prime positive integers with special
properties. The shares are obtained by dividing the secret or a
secret-dependent quantity by the numbers in the sequence and
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collecting the remainders. The secret can be uniquely recovered
from t+1 shares, where t+1 depends on the sequence, by using
CRT.

The authors of the CRT-based threshold secret sharing sche-
mes in [1, 25] have ensured the security of their schemes by
counting the number of possible solutions a group of less than
t+ 1 participants have to try in order to obtain the secret. The
security of the threshold scheme in [16] was argued in a rather
different way, by showing that the secrets are “indistinguish-
able” if at most t − 1 shares are known and the sequence of
co-prime integers consists of prime numbers of the “same mag-
nitude”.

Following an information theoretic approach concerning the
study of the security of a CRT-based threshold scheme, Quisqua-
ter, Preneel and Vandewalle [29] have introduced two mod-
ern concepts: asymptotic perfectness and asymptotic idealness.
Then, they proved that the threshold scheme in [16] is asymp-
totically ideal (and, therefore, asymptotically perfect) provided
that it uses sequences of consecutive primes. Moreover, using an
complexity theoretic approach, they also proved the scheme in
[16] satisfies the perfect zero-knowledge property for consecutive
primes.

The results obtained in [29] leave open a series of problems
concerning the security of the CRT-based schemes:

Open problem OP1: Does there exist other sequences of co-
primes (more compact than sequences of consecutive primes)
that can provide the same level of security or better secu-
rity for the CRT-based threshold schemes?
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Open problem OP2 concerns the security of the Asmuth-Bloom
scheme, as the proofs given in [29] for the asymptotic per-
fectness and asymptotic idealness of the GRS scheme do
not lead to similar results for the Asmuth-Bloom scheme.

Open problem OP3 deals with finding a necessary and suf-
ficient condition for the asymptotic idealness of the GRS
scheme (or the Asmuth-Bloom scheme).

Open problem OP4 targets the refinement of the loss of en-
tropy for the CRT-based threshold schemes.

Open problem OP5 focuses on the problem of construction
of CRT-based schemes for other classes of access structures
that satisfy the security properties in [29].
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Chapter 2

Preliminaries

In this chapter we deal with the introduction of the most ba-
sic concepts used throught our thesis. The main directions are
sets, number theory and information theory. In the first section
we give a brief introduction to sets. Regarding number theory,
in the second section we give a detailed overview of the follow-
ing concepts: divisibility of integers, prime numbers, greatest
common divisor, the euclidean algorithm, congruences and com-
plexity. A special attention is given to the Chinese remainder
theorem and algorithm. In the last section we concentrate on
the definitions and properties of the concepts of probability and
entropy.
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Chapter 3

Secret Sharing Schemes

This chapter is mainly devoted to a formal introduction to secret
sharing schemes.

Let U be a non-empty finite set, whose elements are called
participants (or users). An access structure over U is essentially
a collection of sets of participants. The main characteristic of
such sets is that they are closed under inclusion.

Security concepts associated to secret sharing schemes are
discussed using

• the probabilistic approach, due to Brickell and Stinson
[8] (later refined by Stinson in [35, 34]). It considers any
scheme as a set of distribution rules, where a rule is a
method through which a secret is shared.

• the information theoretic approach, due to Karmin et al.
[22] and Kothari [24] (later refined by Capocelli et al. [9]).
It views secret sharing schemes as a collection of random
variables for which the recovery of the secret is measured
by entropy.

Then, we shows that there are perfect realizations of access
structures, while the next section focuses on ideal schemes. The
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chapter ends by a classification of secret sharing schemes, where
some of the types of secret sharing schemes consider in our thesis
are:

Weighted threshold secret sharing schemes [31, 26, 5] as
natural generalizations of threshold secret sharing schemes,
where each participant is assigned a weight depending on
his importance (role) in the group of all participants. The
secret can be reconstructed if and only if the sum of the
weights assigned to a set of participants is greater than or
equal to a fixed threshold. This idea was first proposed by
Shamir [31] who also suggested a realization of it by using
tuples of polynomial values associated to each participant.

Multilevel secret sharing schemes [32, 36, 5, 6], where the
participants are divided into disjoint levels according to
their importance. These levels are totally ordered and
participants on lower levels are more important than par-
ticipants on higher levels. According to the restriction over
the number of participants that take part in the recovery
of the secret we have disjunctive multilevel schemes [32]
(DMAS, for short), where the set of participants satisfy
the threshold at some level i, and conjunctive multilevel
schemes [36], where the set of participants must satisfy
the threshold for all levels i.
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Chapter 4

CRT-based threshold schemes and their
security

In this chapter we introduce the CRT-based threshold secret
sharing schemes from [1, 16, 25], and present the security con-
cepts introduced by Quisquater et al. [29] and their results
concerning the security of the threshold scheme in [16] based on
sequences of consecutive primes.

Our contribution consists of proposing a generic construction
for CRT-based threshold secret sharing schemes (for uniformity
presented at the end of Section 4.1) and the introduction of
compact sequences of co-primes [3] (that were further extended
to k-compact sequences in [11, 15]) as the formal approach to
“integers of the same magnitude” [16]. Moreover, we adapt
the security concepts from Section 4.2 to include the sequences
discussed, and study some of their basic properties.

Another direction, concerning our contribution, is to the se-
curity of the schemes in [1, 16, 25], for which we provide a more
suitable bound [15] for the loss of entropy, and study the secu-
rity of the schemes in [1, 16, 25] based on (k-)compact sequences
of co-primes. Furthermore, for the schemes in [1] and [16] a
necessary and sufficient condition is provided with respect to
asymptotic idealness
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4.1 Threshold secret sharing schemes

4.1.1 The Asmuth-Bloom scheme

Let t and n be two positive integers with 0 < t+ 1 ≤ n. We call
a sequence of co-primes m0,m1, . . . ,mn an Asmuth-Bloom (t+
1, n)-threshold sequence of co-primes if the following properties
are satisfied:

• m0 < m1 < · · · < mn;

•
∏t+1
i=1mi > m0

∏t−1
i=0mn−i (called the Asmuth-Bloom con-

straint).

The Asmuth-Bloom (t+ 1, n)-threshold scheme [1] is defined
as follows:

Asmuth-Bloom scheme

parameter
setup

consider m0,m1, . . . ,mn an Asmuth-Bloom
(t + 1, n)-threshold sequence of co-primes.
The integers t, n,m0,m1, . . . , mn are public
parameters;

secret and
share spaces

define the secret space as Zm0 and the share
space of the ith participant as Zmi

, for all
1 ≤ i ≤ n;

secret sharing given a secret s, generate a random r such

that s′ = s + rm0 <
∏t+1
i=1mi. Share s, by

si = s′ mod mi for all 1 ≤ i ≤ n;
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secret
reconstruction

any set A of participants with |A| ≥ t +
1 can uniquely reconstruct the secret s by
computing first the unique solution modulo∏
i∈Ami of the system:

x ≡ si mod mi, ∀i ∈ A .

and then reducing it modulo m0.

The security of the Asmuth-Bloom scheme was argued by
counting the number of possible solutions an unauthorised set
has to try to get the secret.

4.1.2 The Mignotte scheme

In the Mignotte scheme [25] the secret space is much larger than
the one consider in the Asmuth-Bloom scheme. Moreover, m0

is not used.
For symmetry, we introduce the Mignotte (t+1, n)-threshold

sequence of co-primes as a sequence of co-primes m1, . . . ,mn

which satisfies:

• m1 < · · · < mn;

• α ≤ β, where α = 1 +
∏t−1
i=0mn−i and β =

∏t+1
i=1mi.

One may notice that the Mignotte (t + 1, n)-threshold se-
quence is a particular case of the Asmuth-Bloom (t + 1, n)-
threshold sequence of co-primes, where m0 is 1.

Let t and n be integers with 0 < t + 1 ≤ n. The Mignotte
(t+ 1, n)-threshold scheme [25] is defined as follows:
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Mignotte scheme

parameter
setup

consider m1, . . . ,mn an Mignotte (t+ 1, n)-
threshold sequence of co-primes. The inte-
gers t, n,m1, . . . ,mn are public parameters;

secret and
share spaces

define the secret space as [α, β) and the share
space of the ith participant as Zmi

, for all
1 ≤ i ≤ n;

secret sharing given a secret s, the shares are computed as
si = s mod mi for all 1 ≤ i ≤ n;

secret
reconstruction

any set A of participants with |A| ≥ t +
1 can uniquely reconstruct the secret s as
the unique solution modulo

∏
i∈Ami of the

system:

x ≡ si mod mi, ∀i ∈ A .

The security of the Mignotte scheme is based on the number
of possible solutions an maximal unauthorised set has to try to
get the secret.

4.1.3 The GRS scheme

The Goldreich, Ron and Sudan scheme [16], called GRS for
short, is similar to the construction proposed by Asmuth and
Bloom [1]. Instead of constraining the sequence of co-primes,
the GRS scheme uses the Chinese Remainder Theorem for both
the construction and reconstruction of the secret.
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Let t and n be integers with 0 < t + 1 ≤ n. The GRS
(t+ 1, n)-threshold scheme [16] is defined as follows:

Goldreich, Ron and Sudan (GRS) scheme

parameter
setup

consider a sequence m0 < · · · < mn of co-
primes. The integers t, n,m0, . . . ,mn are
public parameters;

secret and
share spaces

define the secret space as being Zm0
and the

share space of the ith participant as being
Zmi , for all 1 ≤ i ≤ n;

secret sharing given a secret s, randomly generate ri from
Zmi

for all 1 ≤ i ≤ t, and compute s′ as the
unique solution modulo m0

∏t
i=1mi of the

system

x ≡ ri mod mi, 0 ≤ i ≤ t
where r0 = s. The shares are obtained from
s′, by si = s′ mod mi, for all 1 ≤ i ≤ n.
(Note that ri = si for all 1 ≤ i ≤ t.)

secret
reconstruction

any set A of participants with |A| ≥ t +
1 can uniquely reconstruct the secret s by
computing first the unique solution modulo∏
i∈Ami of the system

x ≡ si mod mi, ∀i ∈ A
and then reducing it modulo m0.
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The security of the GRS scheme was explained in a rather
different way, by showing that the secrets are “indistinguish-
able” if at most t − 1 shares are known and the sequence of
co-prime integers consists of prime numbers of the “same mag-
nitude”.

4.1.4 A Generic CRT-based scheme

As one may notice, there are a few similarities between the
secret sharing schemes based on CRT [1, 16, 25] described in
the previous sections. Therefore, in this sub-section we present
a general method for constructing threshold schemes based on
CRT [3].

Given t and n such that 0 < t + 1 ≤ n, the main idea of
constructing a CRT (t+ 1, n)-threshold scheme is the following:

CRT scheme

parameter
setup

consider a sequence m0 < · · · < mn of co-
primes. The sequence may be subject to var-
ious constraints. The integers t, n,m0, . . . ,mn

are public parameters;

secret and
share spaces

define the secret space as being an inter-
val [α, β), where α and β depend on the
sequence of co-primes (and on t), and the
share space of the ith participant as being
Zmi , for all 1 ≤ i ≤ n;

secret sharing given a secret s in the secret space, let s′ de-
note the secret-dependent quantity obtained
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from s (that may depend on t and on the
scheme). The shares are computes as si =
s′ mod mi, for all 1 ≤ i ≤ n.

secret
reconstruction

any authorized set A of participants (which
has cardinality greater or equal to t + 1)
should allow an easy reconstruction of the
secret. Moreover, the scheme is expected
to satisfy some security properties with re-
spect to the secret reconstruction from less
than t+ 1 shares. From an information and
complexity theoretic point of view, less than
t + 1 shares should give no information on
the secret.

4.2 Security properties

Starting from the security arguments in [1, 25], Quisquater et
al. [29] have introduced the modern concepts of asymptotic
perfectness and asymptotic idealness, in order to provide a more
detailed study of the security of threshold schemes based on
CRT. Then, they proved that the GRS threshold scheme [16]
is asymptotically ideal (and, therefore, asymptotically perfect)
and perfect zero-knowledge provided that it uses sequences of
consecutive primes.

For simplicity, let U = {1, 2 . . . , n} be the set of participants.
Given a CRT (t + 1, n)-threshold scheme and a non-empty set
I ⊆ U , consider the random variables X and YI that take values
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into the secret space Zm0
and into the share space

∏
i∈I Zmi

,
respectively.

We define the loss of entropy [29] assigned to yI , denoted
∆(yI), as

∆(yI) = H(X)−H(X |YI = yI) ,

for any yI ∈
∏
i∈I Zmi

.

Definition 4.2.1. [29] Given a set of participants U of cardinal-
ity n, a CRT (t, n,m0,m1, . . . ,mn)-threshold scheme is called
asymptotically perfect if, for any non-empty subset I ⊆ U with
|I| ≤ t and any ε > 0, there exists m ≥ 0 such that for any
sequence of co-primes m0 < m1 < . . . < mn with m0 ≥ m, the
following hold:

• H(X) 6= 0;

• |∆(yI)| < ε for any yI ∈
∏
i∈I Zmi .

Definition 4.2.2. [29] Given a set of participants U of car-
dinality n, a CRT (t, n,m0,m1, . . . ,mn)-threshold scheme is
called asymptotically ideal if it is asymptotically perfect and
for any ε > 0 there exists m ≥ 0 such that for any sequence
m0 < m1 < · · · < mn of co-primes with m0 ≥ m and any
1 ≤ i ≤ n the following holds:

|Zmi
|

|Zm0 |
< 1 + ε.

Note that |Zmi |/|Zm0 | is the information rate associated to
the ith participant.

14



In [29] it was shown that the the loss of entropy for the
GRS threshold scheme can be upper bounded. Furthermore,
the GRS threshold scheme based on sequences of consecutive
primes, under the uniform distribution over the secret space, is
asymptotically perfect, and asymptotically ideal (the proofs are
omitted).

Lemma 4.2.3. [29] The loss of entropy of the GRS (t, n,m0,m1,
. . . ,mn)-threshold scheme with respect to the uniform distribu-
tion on the secret space satisfies the following relations:

• ∆(yI) ≤ log

m0

(⌊
C(I) + 1

m0

⌋
+ 1

)
C(I)

, if C(I) 6= 0,

• ∆(yI) = logm0, if C(I) = 0,

for any yI ∈
∏
i∈I Zmi

, where

C(I) =

⌊
m0

∏t
i=1mi∏

i∈I mi

⌋
.

The following result is a straightforward adaptation of the
previous lemma.

Corollary 4.2.4. The loss of entropy of the Asmuth-Bloom
(t, n,m0,m1, . . ., mn)-threshold scheme, satisfies the same re-
lations as those in Lemma 4.2.3 for

C(I) =

⌊ ∏t+1
i=1mi∏
i∈I mi

⌋
.
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Theorem 4.2.5. [29] The GRS (t+1, n)-threshold scheme based
on sequences of consecutive primes is asymptotically perfect, un-
der the uniform distribution on the secret space.

Theorem 4.2.6. [29] The GRS (t+1, n)-threshold scheme based
on sequences of consecutive primes is asymptotically ideal, under
the uniform distribution on the secret space.

Given the instance CRT (t, n,m0,m1, . . . ,mn), a secret s ∈
Zm0 , and a non-empty set I ⊆ U , we define Ys,I as the random
variable that takes the value yI ∈

∏
i∈I Zmi

as the combined
shares of all i ∈ I in the same process of sharing s.

Definition 4.2.7. [29] Given a set of participants U of cardinal-
ity n, a CRT (t, n,m0,m1, . . . ,mn)-threshold scheme is called
perfect zero-knowledge if, for any polynomial poly there exists
m ≥ 0 such that for any sequence m0 < m1 < · · · < mn of
co-primes with m0 ≥ m, any s, s′ ∈ Zm0

, and any non-empty
set I ⊆ U with |I| ≤ t, the following holds:∑

yI∈
∏

i∈I Zmi

|P (Ys,I = yI)− P (Ys′,I = yI)| ≤
1

poly(m0)

In [29] it was shown that under a uniform distribution over
the secret space the GRS threshold scheme based on sequences
of consecutive primes is perfect zero-knowledge.

Theorem 4.2.8. [29] The GRS (t+1, n)-threshold scheme based
on consecutive primes is perfect zero-knowledge with respect to
the uniform distribution on the secret space.

16



4.3 Compact sequences of co-primes

The authors of the GRS (t+1, n)-threshold scheme have argued
that no information is given from a complexity theoretic point
of view, if at most t − 1 shares are taken and the scheme is
based on sequences of large primes of the same magnitude. This
result was extended to t shares in [29] if consecutive primes are
considered. As such, it was proven that the GRS (t + 1, n)-
threshold scheme based on sequences of consecutive primes is
asymptotically ideal and perfect zero-knowledge.

Although the term integers of the “same magnitude” is not
defined in [16], one can easily see that consecutive primes are
particular cases. Therefore, in [3] we introduce the concept of
compact sequence of co-primes as a suitable definition for co-
primes of the “same magnitude”. Furthermore, in [11, 15] we
noticed that the secret space m0 does not always has to be
placed before the rest of the sequence. As such, we extend
compact sequences to k-compact sequences of co-primes.

Definition 4.3.1. [3] A sequence m0 < . . . < mn of co-primes,
where n ≥ 1, is called a compact sequence of co-primes if mn <
m0 +mθ

0, for some real number θ ∈ (0, 1).

Compact sequences of co-primes play an important role in
designing secure CRT-based threshold secret sharing schemes.
Therefore, a few particular cases were considered in [3] for the
GRS scheme and Asmuth-Bloom scheme:

• (t,Θ)-compact sequence of co-primes. A sequence is (t,Θ)-
compact, where 0 ≤ t < n and Θ ∈ (0, 1), if mt+1 ≥ mt+2
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and mn < m0 +mθ
0 for some θ ∈ (0,Θ].

• quasi-compact sequence of co-primes. A sequence is quasi-
compact, if m0 −mθ

0 < mi < m0 for any 1 ≤ i ≤ n, and
some θ ∈ (0,Θ].

• almost Θ-compact sequence of co-primes. A sequence of
co-primes is almost Θ-compact if mi ∈ (x, x + xθ) for all
1 ≤ i ≤ n, where dx+ xθe = 2m0 − 2 and θ ∈ (0,Θ]. One
can replace “x = 2m0−2” by “x = km0−2”, for any fixed
integer k ≥ 2.

Definition 4.3.2. [11, 15]

1. A sequence m0,m1, . . . ,mn of pair-wise co-primes is called
(k, θ)-compact, where k ≥ 1 and θ ∈ (0, 1) are two real
numbers, if m1 < · · · < mn and km0 −mθ

0 < mi < km0 +
mθ

0 for all 1 ≤ i ≤ n.

2. A sequence m0,m1, . . . ,mn of pair-wise co-primes is called
k-compact if it is (k, θ)-compact for some θ ∈ (0, 1).

In a k-compact sequence m0,m1, . . . ,mn of co-primes, the
integer m0 may be smaller than m1, greater than mn, or in
between m1 and mn, while m1, . . . ,mn are in increasing order.

4.3.1 More on asymptotic idealness

The concepts of asymptotic perfectness and idealness were intro-
duced for an increasing sequence of co-primes, where the secret
space was the smallest number in the sequence. Therefore, one

18



has to take into account that the changes in the sequences of
co-primes lead to changes in the definitions of asymptotic per-
fectness and idealness. As k-compactness is the largest class of
co-primes considered in this chapter, we modify the definitions
accordingly.

Definition 4.3.3. [11, 15] The CRT (t+1, n)-threshold scheme
based on k-compact sequences of co-primes is called asymptoti-
cally perfect if, for any non-empty subset I ⊆ U with |I| ≤ t, for
any θ ∈ (0, 1) and any ε ∈ (0, 1), there exists m ≥ 0 such that for
any (k, θ)-compact sequence of co-primes m0,m1, . . . ,mn with
m0 ≥ m, the following hold:

• H(X) 6= 0;

• |∆(yI)| < ε for any yI ∈
∏
i∈I Zmi .

As asymptotic idealness depends on the information rate, we
re-define the information rate to take into account the freedom
given to the secret space m0.

Definition 4.3.4. [11, 15] The information rate of the CRT
(t+1, n)-threshold scheme based on k-compact sequences of co-
primes goes asymptotically to k if for any θ ∈ (0, 1) and any
ε ∈ (0, 1), there exists m ≥ 0 such that for any (k, θ)-compact
sequence of co-primes m0,m1, . . . ,mn with m0 ≥ m and any
1 ≤ i ≤ n the following holds:∣∣∣∣∣ |Zmi

|
|Zm0 |

− k

∣∣∣∣∣ < ε .
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Definition 4.3.5. [11, 15] The CRT (t+1, n)-threshold scheme
based on k-compact sequences of co-primes is asymptotically
ideal if it is asymptotically perfect and its information rate goes
asymptotically to 1.

4.3.2 Properties of compact sequences

As one may notice, k-compact sequences are natural general-
izations of compact sequences of co-primes. Therefore, all the
results we have established for compact sequences of co-primes
[3], also hold for k-compact.

Lemma 4.3.6. [3] For any n ≥ 1 there exists m ≥ 0 such
that any sequence m0 < · · · < mn of consecutive primes (or
co-primes) with m0 ≥ m is a compact sequence of co-primes.

Corollary 4.3.7. [3] For any n ≥ 1 and m ≥ 0 there are com-
pact sequences of co-primes of length n+ 1 whose first element
is greater than or equal to m.

According to Definition 4.3.1, given x > 0 and θ ∈ (0, 1),
any sequence of co-primes in between x and x+xθ is a compact
sequence of co-primes. We prove that the interval (x, x+xθ) has
sequences of co-primes “significantly denser” [3] than sequences
of consecutive primes in the same interval.

Let `(x, θ) = π(x+xθ)−π(x) 1 denote the longest sequence
of consecutive primes in between x and x+ xθ.

1 π(x) is defined as the number of primes less than or equal to x.
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Baker et al. [2] have shown that, if θ ≥ 0.54 and x is suffi-
ciently large, then

`(x, θ) = π(x+ xθ)− π(x) >
2xθ

5 log (x+ xθ)
(4.1)

Lemma 4.3.8. [3] For any k ≥ 2 there exists θ, θ2, . . . , θk ∈
(0, 1) and x0 > 0 such that, for any x ≥ x0, the interval
(x, x+xθ) contains compact sequences of co-primes whose length
` satisfies

` > `(x, θ) +

⌊
k∑
i=2

2ixθi/i

5 log (x+ xθ)

⌋

4.4 Bounding the loss of entropy

Lemma 4.3.6 and Corollary 4.3.7 are important tools in study-
ing the loss of entropy for the threshold secret sharing schemes
based on CRT. The following result sharpens it by providing a
more precis approximation of the loss of entropy in the Asmuth-
Bloom threshold scheme. Furthermore, the same results can be
extended to the GRS threshold scheme.

Lemma 4.4.1. [15] Let U be a set of n participants, and I ⊆ U
a non-empty subset. The loss of entropy of the Asmuth-Bloom
(t, n,m0,m1, . . . ,mn)-threshold scheme under a uniform distri-
bution over the secret space satisfies the following relations:

• ∆(yI) = logm0+δ1

⌊
CI
m0

⌋
CI

log

⌊
CI
m0

⌋
CI

+δ2

⌊
CI
m0

⌋
+1

CI
log

⌊
CI
m0

⌋
+1

CI
,

if CI 6= 0,
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• ∆(yI) = logm0, if CI = 0,

for any yI ∈
∏
i∈I Zmi , where δ1 + δ2 = m0, δ2 = CI mod m0,

and CI is either C(I) or C(I) + 1 depending on I (C(I) is the
one defined in Corollary 4.2.4).

Proposition 4.4.2. [15] Corollary 4.2.4 is a direct consequence
of Lemma 4.4.1.

Corollary 4.4.3. Let C(I) be defined as in Lemma 4.2.3. The
result in Lemma 4.4.1, equally holds for the GRS (t, n,m0,m1, . . . ,
mn)-threshold scheme.

4.5 Security of the GRS scheme

In [29] it was shown that the GRS (t + 1, n)-threshold scheme
is asymptotically ideal (and, therefore, asymptotically perfect),
and perfect zero-knowledge if consecutive primes are considered.

Regarding our contribution to the security of the GRS (t+
1, n)-threshold scheme, we have introduced compact sequences
of co-primes [3] and extended the results in [29] to include (t,Θ)-
compact sequences.

Then, in [11] with the introduction of k-compact sequence
we proved there exists a necessary and sufficient condition re-
garding the asymptotic perfectness property of the GRS scheme.
Meaning, the GRS (t+ 1, n)-threshold scheme is asymptotically
perfect with the information rate asymptotically k if and only
if k-compact sequences are considered. Furthermore, the GRS
scheme based on k-compact sequences is perfect zero-knowledge.
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4.5.1 Based on compact sequences

Theorem 4.5.1 (asymptotic perfectness). [3] Let 0 < t+1 ≤ n
and Θ ∈ (0, 1). The GRS (t + 1, n)-threshold scheme based on
(t,Θ)-compact sequences of co-primes is asymptotically perfect
with respect to the uniform distribution over the secret space.

Theorem 4.5.2 (asymptotic idealness). [3] Let 0 < t + 1 ≤ n
and Θ ∈ (0, 1). The GRS (t + 1, n)-threshold scheme based
on (t,Θ)-compact sequences of co-primes is asymptotically ideal
with respect to the uniform distribution over the secret space.

Theorem 4.5.3 (perfect zero-knowledge). [3] Let 0 < t+1 ≤ n
and Θ ∈ (0, 1). The GRS (t + 1, n)-threshold scheme based on
(t,Θ)-compact sequences of co-primes is perfect zero-knowledge
with respect to the uniform distribution over the secret space.

4.5.2 Based on k-compact sequences

Theorem 4.5.4 (asymptotic perfectness). [11] Let 0 < t+ 1 ≤
n be two positive integes and k ≥ 1 a real number. The GRS
(t+ 1, n)-threshold scheme under the uniform distribution over
the secret space is asymptotically perfect and its information rate
goes asymptotically to k if and only if it is based on k-compact
sequences of co-primes.

Corollary 4.5.5 (asymptotic idealness). [11] Let 0 < t+1 ≤ n
be two positive integes. The GRS (t + 1, n)-threshold scheme
under the uniform distribution over the secret space is asymp-
totically ideal if and only if it is based on compact sequences of
co-primes.
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Theorem 4.5.6 (perfect zero-knowledge). [11] Let 0 < t+ 1 ≤
n. The GRS (t + 1, n)-threshold scheme based on k-compact
sequences of co-primes is perfect zero-knowledge with respect to
the uniform distribution over the secret space.

4.6 Security of the Asmuth-Bloom
scheme

In [23] Kaya and Selcuk have felt that replacing the Asmuth-
Bloom sequence by extended Asmuth-Bloom sequence may in-
crease the security of the Asmuth-Bloom scheme, but no formal
proof was given.

Let extended Asmuth-Bloom sequences of co-primes be de-
fined by replacing the Asmuth-Bloom constraint with the fol-
lowing one:

t+1∏
i=1

mi > m2
0

t−1∏
i=0

mn−i

(The extended Asmuth-Bloom sequences of co-primes are Asmuth-
Bloom sequences of co-primes.)

Our contribution consists of upper bounding the loss of en-
tropy for the Asmuth-Bloom scheme based on Asmuth-Bloom
sequences by asymptotically log 2. Moreover, we proved that if
one considers extended Asmuth-Bloom sequences, the Asmuth-
Bloom scheme is asymptotically perfect.

We also introduction compact sequences of co-primes [3] and
proved the Asmuth-Bloom scheme based on almost Θ-compact
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sequences is asymptotically perfect, and the information rate is
asymptotically 2. By changing the secret space from the first
element in the sequences of co-primes to the last element, we
obtained a variant of the Asmuth-Bloom scheme that is asymp-
totically ideal if quasi-compact sequences are considered.

Then, in [15] with the introduction of k-compact sequence
we proved there exists a necessary and sufficient condition re-
garding the asymptotic perfectness property of the Asmuth-
Bloom scheme. Meaning, the Asmuth-Bloom (t+1, n)-threshold
scheme is asymptotically perfect and the information rate goes
asymptotically to k if and only if k-compact sequences are con-
sidered.

Concerning the perfect zero-knowledge property, we have
based our proofs for the Asmuth-Bloom scheme on the result ob-
tained by the GRS scheme. Thus, the Asmuth-Bloom (t+1, n)-
threshold scheme based on almost Θ-compact sequences, on
quasi-compact sequences and on k-compact sequences are per-
fect zero-knowledge.

4.6.1 Based on (extended) Asmuth-Bloom se-
quences

Lemma 4.6.1 (loss of entropy). [3] The loss of entropy of the
Asmuth-Bloom (t, n,m0,m1, . . . ,mn)-threshold scheme based on
Asmuth-Bloom sequences of co-primes under the uniform distri-
bution over the secret space satisfies the following relations:

• ∆(yI) ≤ log
(

1 + 1
m0−1 + 1

m2
0−1

)
, if |I| < t;
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• ∆(yI) < log
(

2 + 1
m0

)
, if |I| = t;

for any yI ∈
∏
i∈I Zmi

, and for any sub-set I ⊆ U .

As a conclusion, the Asmuth-Bloom threshold scheme is not
asymptotically perfect but, its loss of entropy is bounded from
above by log 2.

As the Asmuth-Bloom threshold scheme allows arbitrarily
large gaps between m0 and mi, the information rate of the ith
participant can be arbitrarily large, for any 1 ≤ i ≤ n.

Theorem 4.6.2 (asymptotic perfectness). [15] Let 0 < t+ 1 ≤
n be positive integers. The Asmuth-Bloom (t + 1, n)-threshold
scheme based on extended Asmuth-Bloom sequences of co-primes
is asymptotically perfect with respect to the uniform distribution
over the secret space.

Remark 4.6.3. One may define extended Asmuth-Bloom se-
quences of co-primes in a more liberal way by requiring

t+1∏
i=1

mi > m1+θ
0

t−1∏
i=0

mn−i

for some real number θ > 0.
The result in Theorem 4.6.2 holds in this case too. Moreover,

m1+θ
0 < m1 which shows that the information rate of the first

participant (and in fact, of all participants) is greater than mθ
0.
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4.6.2 Based on compact sequences

Almost Θ-compact

Theorem 4.6.4 (asymptotic perfectness). [3] Let 0 < t+1 ≤ n
and Θ ∈ (0, 1). The Asmuth-Bloom (t + 1, n)-threshold scheme
based on almost Θ-compact sequences is asymptotically perfect
if the secret is chosen uniformly from the secret space.

Theorem 4.6.5 (asymptotic idealness). [3] Let 0 < t + 1 ≤ n
and Θ ∈ (0, 1). The Asmuth-Bloom (t + 1, n)-threshold scheme
based on almost Θ-compact sequences, under the uniform distri-
bution over the secret space, has the information rate asymptot-
ically 2.

Theorem 4.6.6 (perfect zero-knowledge). [3] Let 0 < t+1 ≤ n
and Θ ∈ (0, 1). The Asmuth-Bloom (t + 1, n)-threshold scheme
based on almost Θ-compact sequences of co-primes is perfect
zero-knowledge with respect to the uniform distribution over the
secret space.

Quasi-compact

Theorem 4.6.7 (asymptotic perfectness). [3] Let 0 < t+1 ≤ n.
The Asmuth-Bloom (t+ 1, n)-threshold scheme based on quasi-
compact sequences is asymptotically perfect with respect to the
uniform distribution over the secret space.

Theorem 4.6.8 (asymptotic idealness). [3] Let 0 < t+ 1 ≤ n.
The Asmuth-Bloom (t+ 1, n)-threshold scheme based on quasi-
compact sequences of co-primes is asymptotically ideal with re-
spect to the uniform distribution over the secret space.
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Theorem 4.6.9 (perfect zero-knowledge). [3] Let 0 < t+1 ≤ n.
The Asmuth-Bloom (t+ 1, n)-threshold scheme based on quasi-
compact sequences of co-primes is perfect zero-knowledge with
respect to the uniform distribution over the secret space.

4.6.3 Based on k-compact sequences

Theorem 4.6.10 (asymptotic perfectness). [15] Let 0 < t +
1 ≤ n and k ≥ 1 be positive integers. The Asmuth-Bloom (t +
1, n)-threshold scheme under the uniform distribution over the
secret space is asymptotically perfect and its information rate
goes asymptotically to k if and only if it is based on k-compact
sequences of co-primes.

Corollary 4.6.11 (asymptotic idealness). [15] The Asmuth-
Bloom (t+1, n)-threshold scheme under the uniform distribution
over the secret space is asymptotically ideal if and only if it is
based on compact sequences of co-primes.

Theorem 4.6.12 (perfect zero-knowledge). [15] Let 0 < t+1 ≤
n. The Asmuth-Bloom (t + 1, n)-threshold scheme based on k-
compact sequences of co-primes is perfect zero-knowledge with
respect to the uniform distribution over the secret space.

4.7 Security of the Mignotte scheme

As far as we are concern, the security of the Mignotte scheme
has never been studied using the modern concepts of asymptotic
perfectness, and perfect zero-knowledge. In [3] we have studied
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the security of the Mignotte scheme using compact sequences.
As we will show in this section, there is no reason to adapt the
proofs to take into account k-compcteness.

Theorem 4.7.1. [3] The loss of entropy of the Mignotte (t +
1, n)-threshold scheme cannot be bounded from above.

Based on Theorem 4.7.1, we must conclude that the scheme
is not asymptotically perfect.

Theorem 4.7.2. [3] The information rate of the Mignotte (t+
1, n)-threshold scheme converges to 0.

As a conclusion, based on Theorem 4.7.2, the Mignotte thresh-
old scheme is far from being asymptotically ideal.

Theorem 4.7.3. [3] The Mignotte (t + 1, n)-threshold scheme
is not perfect zero-knowledge.

Although the Mignotte threshold scheme does not satisfy
any of the canonical security properties, some degree of security
is provided. The entropy of the secret when |I| ≤ t shares are
pulled together is roughly

(t+ 1− |I|) logm1 ≥ logm1

Therefore, even considering the massive loss of entropy in
the Mignotte threshold scheme based on some sequence of co-
primes, the entropy of the secret when revealing at most t shares
is comparable (or rather of the same magnitude) with the en-
tropy of the secret in other CRT-based threshold schemes that
use the same sequence of co-primes (namely GRS or Asmuth-
Bloom).
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Chapter 5

CRT-based weighted schemes and their
security

In this chapter we deal with the construction of other CRT-
based schemes that satisfy the security properties of Section
4.2.

In [14] we considered multilevel access structures where each
participant has associated a weight and where each participant
in an authorized set can be replaced by any number of partici-
pants whose weights can compensate the weight of that partic-
ipant. These new multilevel access structure are introduced via
weighted threshold access structures and are called distributive
weighted threshold access structures (DWTAS).

Furthermore, we prove there exists sequences of co-primes
that satisfy the requirements of DWTAS and proposed a CRT-
based secret sharing scheme that realizes such access structures
(DWTSSS).

Concerning the security of the DWTSSS, we proved that the
scheme is asymptotically perfect and perfect zero-knowledge.
As the scheme allows for the share spaces to be arbitrarily large
compared to the secret space, the scheme can not be asymptot-
ically ideal.
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5.1 DWTAS

Definition 5.1.1. [14] Let U be a non-empty finite set. A
distributive weighted threshold access structure (DWTAS) over
U is a triple (w, t,Γ), where:

1. t = (t1, . . . , tq) ∈ Zq satisfies 0 < t1 < · · · < tq, where
q ≥ 1;

2. w : U → R is the weight function which enjoys the prop-
erties:

(a) w(x) ∈ {1/t1, . . . , 1/tq};
(b) |{x ∈ U |w(x) = 1/ti}| ≥ ti, for any 1 ≤ i ≤ q;

3. Γ = {A ⊆ U |w(A) ≥ 1}.

Lemma 5.1.2. [14] DWTAS are strict extensions of DMAS.

Theorem 5.1.3. [4] A WTAS Γ over U is ideal if and only if
one of the following three conditions holds:

1. Γ is an DMAS of at most three levels;
2. Γ is a TPAS;
3. Γ is a composition of two ideal WTAS defined on sets of

participants smaller than U .

Based on this theorem we obtain the following result.

Theorem 5.1.4. [14] There are DWTAS that are not ideal.
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Definition 5.1.5. [14] Given A ⊆ U , the characteristic vector
of A w.r.t. (w, t,Γ) is a vector cA = (c1, . . . , cq) which satisfies

ci =
∣∣{a ∈ A |w(a) = 1/ti}

∣∣ ,
for all 1 ≤ i ≤ q.

Lemma 5.1.6. [14] Let (w, t,Γ) be a DWTAS and A a minimal
authorized set whose characteristic vector is cA = (c1, . . . , cq).
If there are l and r such that

1. 1 ≤ l ≤ r ≤ q;
2. ci = 0 for all 1 ≤ i ≤ l − 1 and r + 1 ≤ i ≤ q;
3. cl > 0 and cr > 0,

then tl ≤
∑r
i=l ci ≤ tr. Moreover, if l < r then tl <

∑r
i=l ci ≤

tr.

5.2 DWTSSS

Definition 5.2.1. [14] Let 0 < ε ≤ 1 be a real number and
t = (t1, . . . , tq) and n = (n1 . . . , nq) be two vectors of positive
integers with 0 < t1 < · · · < tq and ti ≤ ni for all 1 ≤ i ≤ q. An
(ε, t, n)-sequence is a pair L = (m0, (Li | 1 ≤ i ≤ q)) consisting
of a positive integer m0 and q sets L1, . . . , Lq of positive integers
such that:

1. |Li| = ni, for all 1 ≤ i ≤ q;
2. (m0, x) = 1 and (x, y) = 1 for any x, y ∈ ∪qi=1Li with
x 6= y;

3. m0 · α < β, where α = max{xti−ε|1 ≤ i ≤ q, x ∈ Li} and
β = min{xti |1 ≤ i ≤ q, x ∈ Li}.
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Theorem 5.2.2. [14] There are (ε, t, n)-sequences with arbi-
trarily large security parameters, for any ε, t, and n as in Defi-
nition 5.2.1.

DWTSSS

parameter
setup

choose an (ε, t, n)-sequence L = (m0, (Li | 1 ≤
i ≤ q)), where ni = |Ui| for all 1 ≤ i ≤ q (L
will be called an (ε, t, n)-sequence associated
to (w, t,Γ)). The integers t, n,m0,m1,1, . . . ,
mq,nq

are public parameters;

secret and
share spaces

define the secret space as Zm0
and the share

space of the jth participant on the ith level
as Zmi,j

, for all 1 ≤ i ≤ q and all 1 ≤ j ≤
ni. For simplicity, let (i, j) denote the jth
participant on the ith level;

secret sharing given a secret s, generate a random r such
that s′ = s + rm0 < β is computed (Recall
that β = minqi=1{m

ti
i,1}). Share s, by si,j =

s′ mod mi,j for all 1 ≤ i ≤ q and all 1 ≤ j ≤
ni;

secret
reconstruction

any set A of participants with w(A) ≥ 1 can
uniquely reconstruct the secret s by comput-
ing the unique solution modulo

∏
(i,j)∈Ami,j

of the system

x ≡ si,j mod mi,j , ∀(i, j) ∈ A .

and then reducing it modulo m0.
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5.3 Security issues of DWTSSS

Theorem 5.3.1 (asymptotic perfectness). [14] The (w, t,Γ)-
DWTSSS over a set U is asymptotically perfect with respect to
the uniform distribution over the secret space.

Theorem 5.3.2 (asymptotic idealness). [14] The (w, t,Γ)-DW-
TSSS over a set U , under the uniform distribution over the
secret space, cannot be asymptotically ideal.

Theorem 5.3.3 (perfect zero-knowledge). [14] The (w, t,Γ)-
DWTSSS over a set U is perfect zero-knowledge with respect to
the uniform distribution over the secret space.
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Chapter 6

Conclusion and Future work

The authors of [16], studying the security of their threshold
scheme, advised to use sequences of primes of the “same mag-
nitude” in order to get better security (the term “same magni-
tude” was not defined in [16]). If the primes are consecutive and
large enough, as it was used in [29], they may be considered of
the same magnitude. However, “same magnitude” should mean
more that “consecutive primes”.

Starting from this remark, the aim of this thesis was to define
in a proper way the concept “same magnitude” and to study the
security of the threshold schemes in [1, 25, 16] when they are
based on sequences of co-primes of the same magnitude. We
proved that

– sequences of consecutive primes or consecutive co-primes
are particular cases of (k-)compact sequences of co-primes;

– we can find arbitrarily long (k-)compact sequences of ar-
bitrarily large co-primes, and

– any sequence of consecutive primes in an interval covers a
denser sequences of co-primes in the same interval.
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Regarding the security properties of the GRS scheme and
Asmuth-Bloom, we have shown there exists a necessary and
sufficient condition concerning the asymptotic idealness if and
only if (1-)compact sequences of co-primes are considered. We
believe our results close completely the security problems for the
GRS scheme and the Asmuth-Bloom scheme. Furthermore, we
proved that the GRS scheme and Asmuth-Bloom scheme based
on k-compact sequences of co-primes are asymptotically perfect
and perfect zero-knowledge.

As with respect to the Mignotte secret sharing scheme, even
if this scheme uses (k-)compact sequences of co-primes its loss
of entropy cannot be bounded from above, its information rate
converges to 0, and it is not perfect zero-knowledge.

Concerning the construction of other CRT-based schemes,
we proposed a realization of distributive weighted threshold ac-
cess structures and we have shown that this realization is asymp-
totically perfect and perfect zero-knowledge. As with respect to
asymptotic idealness, we proved that distributive weighted ac-
cess structures do not generally have ideal realizations.

One may identify the following open problems:

Open problem OP5’ aimed at the construction of CRT-based
schemes for other classes of access structures.

Open problem OP6 focuses on the comparison between com-
pact sequences and epsilon sequences with one level.

Open problem OP7 deals with the difference between per-
fectness and asymptotic perfectness ensured by (1-)compact
sequences of co-primes.
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