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Chapter 1

Introduction

The technological progress of society in the 20th century, espe-
cially regarding digital information, its processing, transmission
and storage, has lead to a sizeable increase in the volume of data
available. Fields such as biology, finance, physics, engineering
and many more now dispose of huge amounts of data in elec-
tronic format. This encouraged and fueled the development of
Data Mining , Pattern Recognition and Machine Learning, all
proeminent fields which aide and direct the analysis and pro-
cessing of such large amounts of data in the pursuit of deriving
usable knowledge from it.

A large part of the problems addressed in these fields repre-
sent learning problems. Tom Mitchell defines this class of prob-
lems as:

“A computer program is said to learn from experience E with
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respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.”

Machine learning algorithms are nowadays pervasive in the
lives of many. From recognizing the $ signs hand written in a
check filled to the bank, to detecting fraudulent bank transac-
tions, exploring medical databases, learning the human genome,
optimizing the performance of the engine in a car and many oth-
ers represent important applications of Machine Learning which
influence the activity of millions of

1.1 Research Topic

This thesis is focused on problems regarding linear binary clas-
sification, the main purpose being to construct a new binary
classifier which simultaneously satisfies a series of criteria which
are of high importance to practical applications, criteria which
which have not been so far satisfied by any other current ap-
proach.

In the class of learning problems, classification takes on an
important role. A learning problem for which the sought func-
tion has a finite set of output values is named a classification
problem.

The function obtained in classification problems as a result
of the learning process is referred to as a decision function, the
values of which are called classes or labels. When the labels
have only two possible values, the problem is named a binary
classification problem.
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Using decision trees, any classification task can be reduced
to a set of binary classification problems.

Among the algorithms which have had great success in bi-
nary classification, hyperplane classifiers are some of the most
proeminent. Such algorithms use points in a Hilbert space as
input data. They build a hyperplane, named separating hyper-
plane, which divides the space into two semispaces. The points
in one of the semispaces are labeled positively whilst the points
in the other semispace are labeled negatively. Due to the fact
that semispace belongness can be decided by looking at a single
scalar product, hyperplane classifiers end up belonging to the
linear classifier class, having decision functions which are linear.

The objective of this thesis is to present a new hyperplane
classifier which simultaneously satisfies the following criteria:

1. The problem objective should be strongly correlated to the
classifier’s probability of error. Thus, the objective should
take into consideration the distribution of the training set.

2. The mathematical modelling should allow efficient and
complete resolution of the underlying optimization prob-
lem.

3. The model should allow for kernel function usage. This
should facilitate solving nonlinear separation problems.

4. The algorithm should be stable with regard to outliers and
should not necesitate linear separation of the training set.

The approaches thus far presented in current literature gen-
erally satisfy the third criteria and some satisfy the fourth. None
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of them simultaneously satisfy both the first and the second cri-
teria.

The algorithm proposed in this thesis will be shown to sat-
isfy all of these criteria simultaneously, representing an unique
contribution from this standpoint.
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Chapter 2

A Motivating
Application of Binary
Classification:
microRNA Sequences

In recent years, many practical problems have evidenced the
need for well perfoming classification algorithms. One such
problem comes from the field of bioinformatics, having impor-
tant implicatinos in the understanding of how living organisms
mechanisms function and in the treatment of some difficult dis-
eases, such as cancer.
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DNA and RNA sequences represent major components in bi-
ological mechanisms. The information retained in coding DNA
genes is used in producing proteins. Transmission of this infor-
mation is usually accomplished by the use of RNA messsenger
sequences, mRNA. There are, however, some RNA sequences
which do not transmit information. Some of these may actu-
ally block the transcription of the information which tipically
occurs in the protein creation process, allowing such sequences
to regulate the transmission of information.

An important class of sequences with transcription inhibitory
role is represented by microRNA sequences. Many recent pa-
pers refer this type of sequences as having a very high potential
in treating diseases by regulating the expresivity of the genes
involved in said diseases. Identifying such sequences is, thus,
very important.

This problem can be solved with the help of a binary classi-
fier that would decide whether a sequence is microRNA or not.
Such an approach is represented in the yasMiR algorithm. Yas-
MiR builds for each RNA sequence a description composed of
specific distances to a fixed set of sequenced, called pivot se-
quences. This allows each RNA sequence to be represented as a
point in Rn. Sequences which have a known type constitute the
training set for building a decision function. The used binary
classifier is Support Vector Machines (SVM).

The important contribution to this classifier is the addition
of feature selection. This is accomplished in two stages. The
first one sorts the the features in order of descending relevance
for classification, where relevance is measured by the Symmet-
rical Uncertainty (SU) score. In the second stage redundant
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features are eliminated with the help of a filter built using the
results of Kolmogorov and Smirnov regarding the resemblance
of distributions. Of two similar features deemed redundant, the
one with the highest score is kept. Similar to Eratosthenes’
sieve, each feature which has not yet been eliminated removes
all other features redundant to it with a lower SU score.

Starting the selection process from a set of 169 pivots man-
ually chosen, the feature set is reduced corresponding to 90%
and 95% relevance levels. The reduced feature sets are shown
to yield significantly improved results compared to the original
set.

The method also allows for automatic selection of pivot se-
quences. This is achieved by starting from a set of 10000 ran-
domly generated sequences for which feature selection is applied.
The best 13 pivots are then shown to have comparable results
to the best manually selected set.
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Chapter 3

Probabilistic Vector
Machines

The introduction of the SVM classifier allowed the handling of
difficult problem, such as the one presented in Chapter 2. How-
ever, the SVM model does not satisfy the four criteria presented
in Chapter 1. A number of classifiers has been proposed after
the introduction of SVM, but none satisfy both the first and the
second criteria and, implicitly, none satisfy all four.

In order to obtain a model that does satisfy the criteria,
the objective must be based on the probability of error of a
linear classifier. This chapter presents the formulation of such an
objective which, although is not a convex function, models the
maximum of false positive (FP) and false negative probabilities
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(FN). It assumes a normal distribution of the signed distances of
positively labeled points and similarly for the negatively labeled
points. Under this assumption, it is shown that the proposed
objective leads to the selection of a separation hyperplane which
is optimal with regard to FP and FN probabilities.

Let S = {(xi, yi) ∈ H × {−1, 1}|i = 1..m} be the training
set for the classifier. In most instances, the Hilbert space, H,
will actually be the n-dimensional real space, Rn, and thus will
be identified as such in what follows. Let S+ = {xi|(xi, yi) ∈
S, yi = 1} and S− = {xi|(xi, yi) ∈ S, yi = −1}. These will be
named the positive and the negative training sets.

Suppose that a hyperplane in Rn is expressed through its
normal unitary vector and its offset, (w, b) ∈ Sn × R, where Sn
represents the n-dimensional sphere. Then let D+(w, b) = {<
xi, w > +b ∈ R|xi ∈ S+} and D−(w, b) = {< xi, w > +b ∈
R|xi ∈ S−} be the signed distances of positive and negative
training points.

Let E+, E− be the averages of D+ and D− respectively. Let
σ+, σ− be the standard deviations of D+, D−. The initially
proposed objective is, then:

min
(w,b)∈Sn×R

max{ σ+
E+

,− σ−
E−
}

The condition necessary for optimality of this model is that
D+ and D− be sample sets of normal distributions. It is shown
that this condition may be relaxed somewhat, allowing for a
broader set of situations to be covered in an optimal manner.
Figure 3.1 describes the idea behind choosing this objective.
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λ s+

(w, b)

E- E+

Figure 3.1: The red area corresponds to the FN probability,
the blue area to the FP probability. The proposed objective
tries to minimize the maximum between these two areas, or,
equivalently, to maximize λ.
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In order to facilitate obtaining an optimization problem that
may be solved completely, such as a convex problem, the stan-
dard deviation is replaced with the average deviation. The prob-
lem may be expressed as:

min(w,b)∈Sn×R max{ σ+

E+
,− σ−

E−
}

E+ = b+ 1
|S+|−1

∑
xi∈S+

< w, xi >

E− = b+ 1
|S−|−1

∑
xi∈S−

< w, xi >

σ+ = 1
|S+|−1

∑
xi∈S+

| < w, xi > +b− E+|
σ− = 1

|S−|−1
∑
xi∈S−

| < w, xi > +b− E+|

(3.1)

It is first shown that the model maintains its properties and
yields the same separating hyperplane when w ∈ Rn, as opposed
to having w ∈ Sn. It is then shown that the modelling of σ+ and
σ− may be relaxed to a liniar formula, transforming the model
to: 

min(w,b)∈Sn×R max{ σ+

E+
,− σ−

E−
}

E+ = b+ 1
|S+|−1

∑
xi∈S+

< w, xi >

E− = b+ 1
|S−|−1

∑
xi∈S−

< w, xi >

σi+ ≥ | < w, xi > +b− E+|,∀xi ∈ S+

σi− ≥ | < w, xi > +b− E−|,∀xi ∈ S−
σ+ = 1

|S+|−1
∑
xi∈S+

σi+
σ− = 1

|S−|−1
∑
xi∈S−

σi−

(3.2)

The important result is that the (3.1) and (3.2) optimization
problems have the same optimal set and are, thus, equivalent.
This allows a modelling of the which uses only linear inequal-
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Figure 3.2: PVM separation on the left side; SVM separation on
the right. The separation induced by PVM takes into account
the distribution of the two training sets, not just the border
members.

ities. The classifier obtained by solving this system is entitled
Probabilistic Vector Machines (PVM).

It is important to nota that, due to the formulation based on
a statistical model of the data, the resulting classifier is robust
to outliers and will not require linear separation of the data. To
better depict the idea of the classifier, Figure 3.2 compares the
separation induced by PVM with that induced by SVM. Figure
3.3 shows the effect of introducing outliers.

System 3.2 uses linear constraints, but the objective itself
is not a convex function. The fundamental observation that
allows resolving this situation is that although the objective is
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Figure 3.3: The result of training a PVM classifier with outliers.
Figure 3.3a shows the result of training using the same data as
Figure 3.2. Figure 3.3b shows the result of training after adding
outliers to the same data.
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not convex, it is, however, quasiconvex for positive values of the
denominator, meaning each sublevel set is convex. This allows
complete optimization via bisection, which generates a sequence
of linear feasibility problems. The reduction to linear feasibility
is also important due to the fact that it allows the usage of
readily available linear optimization libraries.

The model presented thus far simultaneously fulfills criteria
1, 2 and 4. All that is left is to observe that the reduction to
linear feasibility problems facilitates expressing the model only
through scalar products. This allows for the usage of kernel
functions, leading to the satisfaction of all four criteria outlined
at the beginning of this thesis. It also bears mentioning that
the statistical model used allows the usage of training weights,
thus dealing with skewed data sets.

The results of comparing PVM and SVM presented in Table
3.1 clearly favors the PVM model, with the exception of one
problem which has a distribution of data that is not normal and
another which has too few training instances for the statistical
model to be stable.
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Data Set SVM Acc PVM Acc PVM Obj.

Credit Screening 76.98 84.13 0.5397
Heart Cleveland 54.23 82.11 0.7437
Ionosphere 64.28 82.18 0.6112
Liver Bupa 68.45 66.91 1.715
Heart SPECT train 76.45 62.31 0.7545
Heart SPECTF
train

56.87 79.4 0.3973

Table 3.1: Comparison between PVM and SVM using a scalar
kernel. The results shown represent the average of 30 runs.
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Chapter 4

Convex Feasibility

During the testing phase presented in Chapter 3, one of the crit-
ical points was choosing the linear optimization library. A large
set of options was explored, but none of these proved viable in
solving all the instances in which kernel functions are used or for
problems with a record count higher than 1000 records. Espe-
cially for larger data sets, both the solve time and the memory
requirements increased drastically with size. It soon became ob-
vious that a new algorithm was required, which would be able
to handle the specific requirements of the feasibility problems
that arise in the course of PVM training.

The criteria such an algorithm should satisfy can be summed
as:

1. Good memory scaling to allow large instances to be solved.
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2. The possibility of distributed computation in order to be
able to use more than one computational unit.

3. Stability in the case of severely constrained cases.

In order to fulfill these criteria it is essential to avoid any
matrix inversions, which, although greatly accelerate the solu-
tion search process and can be relatively stable, scale poorly
with problem size in regard to memory requirements. These
requirements all point to projection algorithms.

Using as a starting point one of the most competitive al-
gorithms which do not use matrix inversions, Component Av-
eraged Row Projections (CARP), a new algorithm is proposed.
However, only the distribution scheme was retained from CARP.
On every local machine, however, the solution iteration is done
via a dynamic weighted average of projections onto subsets of
the semispaces which are defined by the system constraints. The
weights used are recomputed at each iteration and are chosen
as proportional to a power of the distances from the projection
semispaces. Computing the weights in this manner implies that
the constraints which are least satisfied bear the greatest in-
fluence on the solution computation process. The algorithm is
named Distance Weighted Projection Operator (DWPO).

It is shown that DWPO converges when the problem is fea-
sible, Furthermore, it is shown that the global iterations are
in fact Fejér monotone with respect to the feasible set. It is
important to note that DWPO requires only a projection oper-
ator. As a consequence of this, it can be used for solving general
convex feasibility problems for which the spaces defined by the
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constraints allow an accurate projection operator. Another im-
portant aspect of the algorithm is that a number of classical and
recent algorithms may be obtained as subcases of it.

Implementation of DWPO was done in C++ and allowed
for a distribution of computations onto a multitude of computa-
tional units. Although the algorithm can be used to solve a large
class of convex feasibility problems, the implementation was spe-
cific to the problems generated by the PVM training process.
This allowed a substantial set of advantages over the general
formulation. Specifically, by exploiting the problem structure.
the memory requirements were reduced by a factor of 8, whilst
speed was increased by a factor of 2.

Testing compared the proposed algorithm with the linear
optimization packages available as well as with the feasibility
algorithms which can be obtained as a subset of DWPO. Among
these is also CARP. The substantial advantages over CARP are:

1. A reduced number of blocks into which the system needs
to be divided. This has two important consequences:

• Reduced network traffic.

• Better synchronization among blocks.

2. Due to the specific implementation, a lower number of
blocks also reduces the required memory.

Compared with the linear optimization packages, DWPO ob-
tained similar solving times, with substantially reduced memory
requirements. This allowed the resolution of far larger problems
than the linear packages could handle. Comparisons were made
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using only one computational unit. However, due to DWPO
having an excellent behaviour with regard to distribution, ob-
taining nearly a linear speedup in the number of computational
units used, it would be trivial to obtain higher speeds that the
simplex algorithms.
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Chapter 5

Hybrid Clustering
and Classification

The testing that was undertaken in Chapter 4 clearly showed
that, in the event of a lack of an adequate linear optimization li-
brary, the current simplex solvers available allow only for rather
small problems to be solved. In order to compensate for this, a
new model which allows the hybridization of PVM with cluster-
ing is presented. This model makes use of the linearity of the
statistical measures used.

The typical procedure when hybridizing these two algorithms
is to replace the trainig set with the cluster centers obtained as
output from a clustering algorithm, with the centers considered
as the average of cluster points. This can introduce skeweness.
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Using the number of points in a cluster as the weight for that
cluster’s center compensates for this and allows the E+, E− av-
erages to have the same value as those obtained on the original
training set. This method of weighing does not, however, recre-
ate the values for the average deviations. When tested in this
form, there is a substantial accuracy loss incurred.

Analyzing the problem, several causes for the accuracy de-
crease became obvious:

1. The substantial difference between the values of the av-
erage deviations obtained on the original training set and
the clustered training set.

2. When using kernel functions, the fact that the cluster cen-
ter is computed for the points in Rn and not in the space
where they are projected by the kernel functions induces
a substantial error in the E+, E− computation.

The second point can be addressed by modifying the mathe-
matical model to allow for an implicit cluster center formulation
which makes use of only cluster belongness of points. It is shown
that this model will always correctly reproduce the E+, E− av-
erages, irrespective of whether or not kernel functions are used.

In order to address the first point, suppose that all clusters
have all their points with a signed distance above or bellow the
associated average. Then the values for σ+, σ− computed for the
clustered training set would coincide with the values computed
for the nonclustered training set. This observation suggests that
clusters with points both above and bellow the associated aver-
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age should be split. For such a cluster, the relative aberration
induced by it in the average deviation can be computed.

An iterative algorithm is built which, using the clustered
data set as a starting point, first trains the weighted PVM clas-
sifier and then splits the clusters with the highest relative in-
duced aberrations. This iterative process is stopped when the
total relative aberration drops bellow a certain threshold. The
algorithm is named Clustering Probabilistic Vector Machines
(C–PVM).

Table 5.1 shows the results of C–PVM obtained with a rela-
tive aberration threshold of 5%. For comparison, the table also
shows the results obtained by the normal PVM algorithm and
by the SVM algorithm using the same kernel.

Data Set SVM PVM C–PVM
Credit Screening 76.98 84.13 84.76
Heart Disease Cleaveland 54.23 82.11 80.91
Ionosphere 64.28 82.18 82.13
Liver 68.45 66.91 66.31
Heart Spect Train 76.45 62.31 66.90

Table 5.1: Results obtained for Clustering PVM using cluster
division.

As is evident from Table 5.1, the results of C–PVM are very
close to those obtained by PVM and both clearly outperform
SVM. The C–PVM results can be improved by lowering the rel-
ative aberration threshold. In fact, when this threshold is 0, the
resulting linear classifier is perfectly identical to that obtained
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by the normal PVM algorithm on the nonclustered data and, as
a consequence, lead to the same result. The only drawback of
using a threshold of 0 for the relative aberration is that there is
a large number of iterations spent breaking only small clusters
of 2-3 points. This leads to a substantial total training time
increase, without a converse increase in accuracy.

The most important benefit of C–PVM is the effective re-
duction of the training set dimension. For the same data sets,
Table 5.2 shows the relative sizes of the final implicit clusters,
obtained as an average over 30 runs. The average relative size
is 0.37 of the original data set. Consider that the feasibility
systems have a number of nonzero terms of the order O(m2)
with regard to the training set size and that the linear opti-
mization libraries use at least O(nz2) memory, where nz is the
number of nonzeroes. It becomes clear that the training set re-
duction obtained by C–PVM leads to a substantial reduction of
the memory required for training. The total execution time also
decreases because, for a linear optimization algorithm, the time
required to solve a problem quickly increases with the number of
nonzeroes – in the most unfavorable cases, it rises exponentially.
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Data Set Initial Size
Averaged
Clustered
Size

Credit Screening 690 225.03
Heart Disease Cleaveland 303 104.83
Ionosphere 351 145.7
Liver 341 67.4
Heart Spect Train 80 48.17

Table 5.2: Average sizes for training sets obtained by C–PVM
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Chapter 6

Conclusions

The present thesis proposes a new binary classification algo-
rithm, PVM, which resolves a set of existing issues with current
algorithms. In the pursuit of widening its range of applicabil-
ity, a complementary set of algorithms is also introduced. The
first of these, DWPO, deals with the issue of convex feasibility
and proves to be competitive, in terms of speed, with some of
the best current algorithms. In terms of memory requirements,
DWPO proves to be extremely efficient when compared to state
of the art simplex algorithms.

The second of the complementary algorithm, C–PVM, proves
to be extremely useful at reducing the size of training datasets.
The size reduction leads to major benefits both in terms of mem-
ory usage and running times. These benefits do not incur any
noticeable accuracy loss.
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For future research, a more general and flexible implementa-
tion of DWPO will be sought, which should also allow different
projection operators to deal with some highly constrained cases.
Another important direction will be adding a merge procedure
to C–PVM which should further reduce the dimension of train-
ing data sets.

Obtaining a model for PVM which can deal with very large
data bases will allow it to be applied to important current prob-
lems, such as microRNA sequence classification.
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Chapter 7

Scientific
Contribution

In this thesis, the scientific contributions, in order of their ap-
pearance, consist of:

1. Applying the Kolmogorov-Smirnov filter in order to reduce
the size of the microRNA sequence identification problem

2. Obtaining an objective for a linear classifier which reflects
the FP and FN probabilities

3. Formulating the initial PVM model and obtaining an equiv-
alent form which uses only linear constraints
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4. Obtaining the sequence of feasibility systems which allows
the optimal resolution of the PVM model

5. Introducing kernel functions and training weights in PVM

6. Formulation of the DWPO algorithm

7. Obtaining a sequential form for DWPO

8. Proving the convergence of DWPO

9. Formulating the halting criteria for DWPO which allows
significant cost reduction in the first stage of the algorithm

10. Using training weights for reconstructing the statistical
model on a clustered data set

11. Formulating the implicit cluster representation model which
allows correct usage of kernel functions

12. The cluster division algorithm, C–PVM

These contributions have been presented in the following pa-
pers and conference participations:

1. Păsăilă D., Sucilă A., Panţiru S., Ciortuz L., “Yet An-
other SVM for MicroRNA recognition: yasMiR”, tehnical
report, Facultatea de Informatică, Universitatea Alexan-
dru Ioan Cuza, Iaşi, 2010

2. Păsăilă D., Sucilă A., Mohorianu I., Panţiru S., Ciortuz
L., “MiRNA Recognition with the yasMiR System: The

28



Quest for Further Improvements”, Advances in Experi-
mental Medicine and Biology, Software Tools and Algo-
rithms for Biological Systems, vol 696, pp 17-25, 2010

3. Sucilă A., Henri Luchian, “Probabilistic Vector Machine”,
In Proceedings of the 7th International Conference on
Data Mining, DMIN’11, pp 198-202, Las Vegas, USA, 2011

4. Sucilă A., Cimpoeşu M., Henri Luchian, “A Distributed
Dense Linear Feasibility Systems Solver”, Accepted at the
14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2012, Timişoara,
România, 2012

5. Sucilă A., Cimpoeşu M., Henri Luchian, “A Statistical
Binary Classifier. Probabilistic Vector Machine”, under
review at Information Processing Letters

6. Sucilă A., Cimpoeşu M., Henri Luchian, “Clustering Prob-
abilistic Vector Machine. A Hybrid Clustering and Classi-
fication Algorithm”, under review at Computational Statis-
tics & Data Analysis
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