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Summary



The study of a mechanical physical phenomenon by applying the classical theory of
mechanical systems is done by considering either the Lagrangian formalism, either in terms
of the Hamiltonian formalism. The �rst of these is based on the use of di¤erent variational
principles, and therefore it can be easily generalized to the relativistic case, while the
second one is based on the concept of energy and it is often used in quantum mechanics.
If we were to denote by M � Rm the domain of the physical states corresponding to

the physical phenomenon that is intended to be studied, then according to the Lagrangian
formalism there exists de�ned a regular function L : TM ! R, L = L (x; y), of class C2,
on M , where TM denotes the set of positions (x) and of directions (y) corresponding to
the physical phenomenon. From a historical point of view, among the �rst Lagrangians
considered there is the di¤erence between the kinetic energy Ec and the potential energy
Ep of a physical phenomenon. By duality, for each Lagrangian L = L (x; y), there exists
a Hamiltonian H : T ?M ! R, given by H (x; p) = yipi � L (x; y) where T ?M denotes the
set of positions (x) and momenta (p) corresponding to a physical phenomenon and where
y = (yi) is the solution of the nonlinear equation pi = @L

@yi
(x; y).

These formalisms have led to the introduction of two remarkable geometries, the geom-
etry of Lagrange spaces and the geometry of Hamilton spaces. On one hand, the Lagrange
geometry is a pair (M;L) where M is a di¤erentiable manifold of �nite dimension (or
modeled by a Banach space) and L : TM ! R is a regular map of class C2, on M . The
set TM denotes the tangent bundle of M . On the other hand a Hamilton space is a pair
(M;H) where M a manfold and H : T ?M ! R is a regular map of class C2, on M . The
set T ?M denotes the cotangent cotangent bundle ofM . These spaces and their properties,
are widely studied in articles and monographs as [24-27].
In the Hamiltonian formalism, in addition to using of the Hamilton function H in the

study of a physical phenomenon, there was considered the natural symplectic structure of
T ?M , which made possible a new approach to the study of di¤erent mechanical systems,
hence a mechanical system is a triplet (M;H; !) whereM is a manifold, H is a real valued
smooth function de�ned on M and ! is a symplectic 2-form on M , i.e. ! is closed and
non-degenerate. Thus, the evolution curves of a mechanical system (M;H; !) are given
by the trajectories of a vector �eld X 2 � (M), which is the only solution of the equation
iX! = �dH.
Afterwards, it was showed that these two geometries could not be used to study non-

holonomic and mechanical systems with constraints, This led to the introduction of pre-
symplectic structures, on one hand, and on the other, to Poisson structures.
A pre-symplectic structure is a pair (M;!) whereM is a manifold and ! is a degenerate

and closed 2-form on M . The reason that led to the introduction of these structures is
as follows. Let (M;!) a symplectic manifold, of dimension 2m, and let N � M be a
submanifold determined by conditions '1 (x) = ::: = 'm (x) = 0. Then the restriction
of !, to N , is still closed, but !jN could be degenerate. P.A.M Dirac had proved that
! is non-degenerate if and only if the matrix � =

�'i; 'j	 is non-degenerate, and,
furthermore, if f; gM is a Poisson bracket on M , then the pairing f; gN , given byff; ggN
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= ff; ggM �
P

j;k

�
f; 'j

	
cjk f'k; gg, where C = kfc_fjkggk is the inverse of �, is a

Poisson bracket on N , hence the pair (C1 (N) ; f; gN) is a Poisson algebra. Although !jN
is degenerate, one can still construct a Poisson algebra.
A Poisson structure is a pair (M; f; g), such that if we denote by C1(M) the set of

smooth real functions on M , then the pair (C1 (M) ; f; g) is a Poisson algebra, i.e. the
map {,} is bilinear, skew-symmetric, satis�es the Jacobi identity and Leibniz�s property.
These structures were introduced by A. Lichnerowicz in [19], and subsequently studied by
A. Weinstein in [46], A.A. Kirillov in [16], V. Guillemin and S. Sternberg in [13] or by I.
Vaisman in [40].
In 1967, in [30], J. Pradines introduces the notion of Lie algebroid as the in�nitesimal

version of a Lie groupoid. Therefore a Lie algebroid over a Banach manifold M is a triple
(E; [; ]E ; �E) where the pair (E; �E) is an anchored Banach bundle, (E; [; ]E) is a Lie algebra
and the anchor �E induces a Lie algebra morphism �E : �(E)! �(M).
In 1976, in [31], L. Maxim-R¼aileanu showed that for any Lie algebroid (E; [; ]E ; �E)

there can be constructuded its graded di¤erential algebra of multilinear and alternate
maps, which is denoted by �? (E) = �0 (E) � �1 (E) � ::: and that the pair (�? (E) ; dE)
is a di¤erential complex with respect to the Lie algebra of E.
In 1987, K. Mackenzie, in [21], gives a �rst systematic approach to the study of both

Lie groupoids and Lie algebroids. As it was only later observed, the notion of Lie algebroid
represents a much more general framework than the tangent bundle of a manifold, hence
the Lagrangian formalism was naturally extended to the case of the Lie algebroids (E.
Martinez [23], M. Anastasiei [1]). On this occasion there could be studied some of the
singular geometric structures (R.L. Fernandez, [12]).
In 1988, T.J. Courant and A. Weinstein, in [9], and later T.J. Courant, in 1990, in [8],

de�ne the notion of Dirac structure on a �nite dimensional vector space V , as a maximal
and isotropic linear subspace D � V � V ? with respect to a bilinear, symmetric and non-
degenerate mapping h; i+, where V ? denotes the algebraic dual of V . Then, the two extend
this de�nition to the case of a �nite dimensional manifold M , where a Dirac structure is a
maximal and isotropic sub-bundle D � TM � T ?M with respect to a bilinear, symmetric
and non-degenerate mapping h; i+, de�ned on the sections of TM � T ?M . By considering
the graphs of certain bundle morphisms, T.J. Courant and A. Weinstein show that these
structures extend both Poisson and pre-symplectic structures.
Also, in [8], T.J. Courant introduces the notion of integrable Dirac structure with

respect to a bilinear and skew-symmetric pairing [; ]C , which, in general, does not satisfy
the Jacobi idenity. In that same article, Courant determines necessary and su¢ cient
conditions for a Dirac structure to be integrable,such as, a Dirac structure is integrable if
and only if it can be endowed with a Lie algebroid structure. Later it was showed that
these structures have many important applications in mechanics and partial di¤erential
equations (I. Dorfmann, [11], A. J. van der Schaft, [34], van der Schaft şi G. Blankenstein,
[35], Blankenstein şi T. S. Raţiu [6], and others).
In [4], M. Anastasiei and A. Sandovici have extended the notion of Dirac structure to
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the case of smooth Banach manifolds and have showed that a Dirac structure is integrable
if and only if it can be endowed with a Lie algebroid structure.
Another extenion of the notion of Dirac structure was given by A. Weinstein, P. Xu

and Z. J. Liu, in [20] where they introduce the Courant algebroid by means of a de�nition
with �ve conditions. Later, this de�nition was used by M. Gualtieri, in [14] in order
to study the generalized complex structures, and respectively by D. Roytenberg in [32],
who determines the basic properties these structures and shows the equivalence between
the de�nition given by A. Weinstein, P. Xu and Z.J. Liu and the one proposed by A.
Weinstein and P. severa. Later, K. Uchino shows in [37] that in order to de�ne a Courant
algebroid only three of the �ve axioms are requiered. Thus by taking as starting point the
de�nition with three axioms proposed by F. Keller and S. Waldmann, in [45], together
with M. Anastasiei, in [5], we have de�ned the notion of Courant algebroid. In that same
paper it was showed that if (E; [; ]E ; �E) were a Lie algebroid then the anchored Banach
bundle E � E? is a Courant Banach vector bundle structure.
In 2002, in [33], van der Schaft and BM Maschke, by using Stokes�s formula and the

Poincaré duality principle introduce a new class of Dirac structures, called Stokes-Dirac
structures. After that, they show that the equations of electromagnetism, the equations
of the ideal telegraphy or vibrating string equation can be derived by considering such
structures. A generalization of these structures was later given by G. Nishida and M.
Yamakita in [28], where, by using the Hodge ? operator, the two introduce the extended
Stokes-Dirac structures of the type ?(d?)m and d(?d)m respectively, and for m = 1 they
derive the Euler-Bernoulli beam equation.
In the following we describe the contents of this thesis, emphasizing on the important

results that were obtained.
The �rst chapter, entitled Banach Manifolds, is divided into two sections, Di¤erential

Calculus on Banach Spaces and Banach manifolds.
In the �rst section we de�ne the notions of Fréchet derivative, higher order Fréchet

derivative, directional derivative, partial derivative, Cr map and Cr-di¤eomorphism, where
r � 1. Then, the state, without any proof, the following results: The Inverse Mapping
Theorem, The Implicit Function Theorem, The Local Surjectivity Theorem and The Local
Injectivity Theorem.
In the second section we de�ne the notion of Banach manifold and construct the tangent

and cotangent bundles of a Banach manifold. Then, we de�ne the concepts of immersion,
submersion and embedding, vector �eld, 1-form and that of k-form. Afterwards we de-
�ne the Lie derivative the exterior di¤erential, the inner product and exterior product
respectively, and state without any proof the basic properties of these maps.
The second chapter, entitled Lie Algebroids, is divided into four sections, Anchored

Vector Bundles, Lie Algebroids, Di¤erential Calculus on Lie Algebroids and respectively
Semisprays on Vector Bundles.
In the �rst section, we de�ne the notion of anchored Banach vector bundle with respect

to a Banach manifold M , as a pair (E; �E) where : E ! M is a Banach vector bundle
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and E : E ! TM is a Banach vector bundle morphism, which is also known as an anchor.
In the second section we de�ne the notion of Lie algebroid, as a triple (E; [; ]E ; �E),

where (E; �E) is an anchored vector bundle, (E; [; ]E) is a Lie algebra and the anchor E

induces a homomorphism of Lie algebras, denoted by E : (E)! (TM), such that [; ]E
has the Leibniz property with respect to it.
In the third section we de�ne the basic operators of di¤erential calculus on Lie alge-

broids, i.e. the exterior di¤erential operator dE, the inner product is and Lie derivative
Ls, where s 2 � (E). Since d2E = 0 one can easily de�ne the cohomology groups of a
Lie algebroid. Then we show that for any Lie algebroid (E; [; ]E ; �E) its exterior graded
algebra ( ?(E); dE) is a di¤erential complex over the Lie algebra of E and that the Lie
derivative commutes with the exterior di¤erential and inner product, i. e. dE�Ls = Ls�dE,
is � Ls = Ls � is and respectively L[s;r]E = Ls � Lr � Lr � Ls and i[s;v]E = Ls � ir � ir � Ls.
In the fourth section, we de�ne the notion of semispray with respect to an anchored

vector bundle, thus extending the de�nition given in the case of the tangent bundle and
determine the transformation laws obeyed the local coe¢ cients of such an object.
The third chapter, entitled Dirac Structures, is divided into three sections, Dirac Struc-

tures on Vector Spaces, Dirac Structures on Lie Algebroids and respectively Dirac Struc-
tures on Courant Algebroids.
In the �rst section we de�ne the notion of Dirac structure on a vector space V as a

maximal and isotropic liniar subspace D of V � V ?, with respect to a bilinear, symmetric
and non-degenerate mapping h; i+, de�ned on V �V ?, where V ? denotes the algebraic dual
of V , and show that the graphs of the skew-symmetric maps A : V ! V ? and B : V ? ! V
are Dirac structures, on V . In the last part of this section we have the characteristic
equations of a Dirac structure.
In the second section we de�ne the notion of Dirac structure with respect to a Lie

algebroid. Let (E; [; ]E ; �E) be a Lie algebroid and let E
? denote its dual . We consider the

anchored bundle E � E?, which we endow with a bilinear, symmetric and non-degenerate
pairing h; i+, given by h(s; �) ; (v; �)i+ = 1

2
(is� + iv��), where (s; �), (v; �) 2 E�E?. Let

D? denote the ortho-complement of a vector sub-bundle D � E�E?, with respect to h; i+.
Hence, D a Dirac structure on the Lie algebroid E if D = D?. If we assume that E is
re�exive then I showed that the graphs of the skew-symmetric morphisms A : E!E?and
B : E? ! E, respectively, are Dirac structures on E. An important example of a skew-
symmetric morphism is s 2 E ! is 2 E?, where ! is a 2-form on E. In this case, it is
no longer necessary that E be re�exive, thus the sub-bundle D! = f(s; is )js 2 Eg is a
Dirac structure on E. Here , we give some examples of Dirac structures derived by using
non-linear connections on both the tangent bundle TM , and on the cotangent bundle T ?M
of a manifold M . Next, i determine the characteristic equations of a Dirac structure on a
Lie algebroid and write these equations for some of the structures mentioned above.
The de�nition of an integrable Dirac structure on a Lie algebroid is given by extending

the Courant bracket [; ]C , introduced by Courant in [8]. In this case, the Courant bracket
[; ]C is given by [(s; �) ; (v; �)]C = ([s; v]E ; Ls��Lv�+ 1

2
dE (iv�� is�)), where (s; �), (v; �)
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2 � (E � E?). By the properties of exterior di¤erential, inner product and Lie derivative
it follows that [; ]C is linear skew-symmetric but, in general, it does not satisfy the Jacobi
identity. Thus it is said that a Dirac structure D �

�
E � E?; h; i+

�
is integrable if it is

closed with respect to the Courant bracket.
In the following, I determined several conditions equivalent to integrability of Dirac

structures. I denoted by J = (J1; J2) : � (E � E?)3!� (E � E?) the jacobiator of the
Courant bracket Courant [; ]C and found the value of J �rstly with respect to the sections
of E � E?and secondly with respect to the sections of a Dirac structure D on E. Also
I have considered the map T : (� (E � E?))3 ! R, given by T ((s; �) ; (v; �) ; (w; )) =
h[(s; �) ; (v; �)]C ; (w; )i+. Next, I have determined several equivalent de�nitions for T jD
and I have also determined the relation between J2jD and T jD, and that T jD is a totally
skew-symmetric tensor �eld. Based on these results I determined a �rst condition equiva-
lent to integrability of Dirac structure, i.e. a Dirac structure D is integrable if and only if
the map T jD vanishes on the sections of D. By demanding that J2 to vanish on the sections
of a Dirac structure, I obtained the main result of this section , i.e. a Dirac structure is
integrable if and only if it can be endowed with a Lie algebroid structure. Among the �rst
consequences of this result we have that Dirac structure D! is integrable if and only if the
2-form ! is closed and that the Dirac structures de�ned on TM and T ?M , where M is a
�nite dimensional manifold, by means of non-linear connections are integrable if and only
if those connections are �at. Then, by assuming that the Lie algebroid E is re�exive and
that the skew-symmetric morphism B : E? ! E has the property that the Dirac structure
DB = graphB is integrable then �1(E) can be structured as Lie algebra.
We say that a function f 2 F (E) is admissible with respect to a Dirac structure D,

on E, if dEf 2 �? (� (D)), or equivalently, if there is a section Xf 2 � (� (D)) such that
ef = (Xf ; dEf) 2 � (D). We denote the set of admissible functions on E, with respect to
D by FD (E). On FD (E) I de�ne the map f; gD, given by ff; ggD = dEf (Xg), where f ,
g 2 FD (E). Then, I showed that the map f; gD is well de�ned and that if D is integrable
then the pair (FD (E) ; f; gD) is a Poisson algebra , on E. In this manner we extended
to the case of a Lie algebroid the Proposition 2.5.1 from [8], which states that if M is a
�nite dimensional manifold and D is an integrable Dirac structure on M , then the pair
(FD (M) ; f; gD) is a Poisson algebra. Here, the bracket f; gD is given by ff; ggD = Xg (f),
where f , g 2 FD (M). Then I concluded that if D is an integrable Dirac structure on the
Banach manifold M , then the pair (FD (M) ; f; gD) is a Poisson algebra . Furthermore, we
showed that the sets of admissible functions with respect to the integrable Dirac structures
D!, DA and DB are Poisson algebras where D! is given above and DA and DB are the
graphs of the skew-symmetric morphisms A : E ! E? and B : E? ! E.
In the �rst part of the third section, we have the de�nition of the Courant algebroid as

given by A. Weinstein, P. Xu and J.Z. Liu, in [20], by a means of a �ve axiom de�nition.
Later, in [37], K. Uchino showed that in order to de�ne a Courant algebroid only three
of the �ve axioms are needed. Here, together with M. Anastasiei, I have extended the
de�nition of S. Waldmann and F. Keller to the case of anchored Banach bundles and
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have determined some of their basic properties and then we have shown that if E is a Lie
algebroid then E�E? is a Courant algebroid. If we take E = TM , we see that TM�T ?M
is a Courant algebroid. In the second part of the third section we de�ne the notion of Dirac
structure with respect to a Courant algebroid and conclude that D is an integrable Dirac
structure on a Lie algebroid E i¤D is a Dirac structure on algebroidul Courant algebroid
E � E?.
The fourth chapter, entitled Stokes-Dirac Structures is divided into two sections, Stokes-

Dirac Structures and Hodge-Dirac Structures. These structures are de�ned with respect
to smooth �nite dimensional manifolds with regular border. Let M be an m-dimensional
smooth orientable manifold with regular boundary, denoted by @M . We consider spaces
of the form Fp;q �Ep;q, where p+ q = m+1and Fp;q = �pc (M)��qc (M)��m�pc (@M) and
Ep;q = �m�pc (M) � �m�qc (M) � �m�qc (@M). Due to the principle of duality of Poincaré
the vector bundle Fp;q�Ep;q is endowed a bilinear , symmetric and non-degenerate pairing
h; i+. We denote by D? the ortho-complent of a vector sub-bundle D of Fp;q � Ep;q, with
respect to h; i+. Therefore we say that D � Fp;q�Ep;q is a Dirac structure onM if D = D?.
The �rst remarkable examples of such structures are due to A.J. van Schaft and B.M.

Maschke. With respect to this type of Dirac structures we de�ne the notion of distributed
port - Hamiltonian system and determine the conservation laws of such a system .
In the second part , using his Hodge ? operator , I de�ne Hodge - Dirac structures, and

that of distributed port - Hamiltonian system corresponding to these structures and show
that the energy of such a system is conserved along certain paths.
In the �fth chapter, called The Integrability of Stokes - Dirac Structures , I have �rstly

introduced the notions of almost Dirac structure and integrable almost Dirac structure by
extending the de�nition of the integrable Dirac structure from the case of the Lie algebroid.
Then we de�ne the notion of integrable Stokes - Dirac structure.
Let D � Fp;q � Ep;q be a sub-bundle and consider the sub-bundles F = �pc (M) �

�m�pc (M)��m�pc (@M) and E = �qc (M)��m�qc (M)��m�qc (@M) as well as the canonical
projections �p : Fp;q � Ep;q!F and �q : Fp;q � Ep;q!E. The sub-bundles F and E are
endowed with the symmetric bilinear maps and h; ip;+ and h; iq;+ and say that a sub-bundle
D of Fp;q�Ep;q is an almost Dirac structure if �p (D) and �q (D) are Dirac structures . After
that I have introduced the notion of integrable almost Dirac structure with respect to a
pair of brackets [; ]p;0;C and [; ]0;q;C . In particular, when M is a 3 - dimensional Riemannian
manifold and p = q = 2 I explicitely de�ned the brackets [; ]2;0;C and [; ]0;2;C , and anchors
p and �q. Afterwards, I have determined the expressions of the jacobiators of [; ]2;0;C and
[; ]0;2;C . Furthermore, I established several conditions equivalent with the integrability of
the sub-bundles �p (D) and �q (D), respectively.
By using the pairings [; ]2;0;C and [; ]0;2;C I have de�ned the notion of integrable Dirac

structure. Also, I have written the integrability conditions for Stokes - Dirac structures,
and the Hodge Dirac structures, too.
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